Balbharti Maharashtra State Board Class 7 Maths Solutions covers the 7th Std Maths Practice Set 48 Answers Solutions Chapter 13 Pythagoras Theorem.
Question 1.
In the figures below, find the value of ‘x’.
![](https://talentjr.in/assets/solution/Maharashtra-Board-Class-7-Maths-Solutions-Chapter-13-Pythagoras-Theorem-Practice-Set-48-1.png?id=3)
Solution:
i. In ∆LMN, ∠M = 90°.
Hence, side LN is the hypotenuse.
According to Pythagoras’ theorem,
l(LN)² = l(LM)² + l(MN)²
∴ x² = 72 + 24²
∴ x² = 49 + 576
∴ x² = 625
∴ x² = 25²
∴ x = 25 units
ii. In ∆PQR, ∠Q = 90°.
Hence, side PR is the hypotenuse.
According to Pythagoras’ theorem,
l(PR)² = l(PQ)² + l(QR)²
∴ 412 = 92 + x²
∴ 1681 = 81 + x²
∴ 1681 – 81 = x²
∴ 1600 = x²
∴ x² = 1600
∴ x² = 40²
∴ x = 40 units
iii. In AEDF, ∠D = 90°.
Hence, side EF is the hypotenuse.
According to Pythagoras’ theorem,
l(EF)² = l(ED)² + l(DF)²
∴ 17² = x² + 8²
∴ 289 = x² + 64
∴ 289 – 64 = x²
∴ 225 = x²
∴ x² = 225
∴ x² = 15²
∴ x = 15 units
Question 2.
In the right-angled ∆PQR, ∠P = 90°. If l(PQ) = 24 cm and l(PR) = 10 cm, find the length of seg QR.
Solution:
![](https://talentjr.in/assets/solution/Maharashtra-Board-Class-7-Maths-Solutions-Chapter-13-Pythagoras-Theorem-Practice-Set-48-2.png?id=3)
In ∆PQR, ∠P = 90°.
Hence, side QR is the hypotenuse.
According to Pythagoras’ theorem,
l(QR)² = l(PR)² + l(PQ)²
∴ l(QR)² = 10² + 24²
∴ l(QR)² = 100 + 576
∴ l(QR)² =676
∴ l(QR)² = 26²
∴ l(QR) = 26 cm
∴ The length of seg QR is 26 cm.
Question 3.
In the right-angled ∆LMN, ∠M = 90°. If l(LM) = 12 cm and l(LN) = 20 cm, find the length of seg MN.
Solution:
![](https://talentjr.in/assets/solution/Maharashtra-Board-Class-7-Maths-Solutions-Chapter-13-Pythagoras-Theorem-Practice-Set-48-3.png?id=3)
In ∆LMN, ∠M = 90°.
Hence, side LN is the hypotenuse.
According to Pythagoras’ theorem,
l(LN)² = l(LM)² + l(MN)²
∴ 20² = 12² + l(MN)²
∴ l(MN)² = 20² – 12²
∴ l(MN)² = 400 – 144
∴ l(MN)² = 256
∴ l(MN)² = 16²
∴ l(MN)= 16 cm
∴ The length of seg MN is 16 cm.
Question 4.
The top of a ladder of length 15 m reaches a window 9 m above the ground. What is the distance between the base of the wall and that of the ladder?
Solution:
![](https://talentjr.in/assets/solution/Maharashtra-Board-Class-7-Maths-Solutions-Chapter-13-Pythagoras-Theorem-Practice-Set-48-4.png?id=3)
The wall and the ground are perpendicular to each other. Hence, the ladder leaning against the wall forms a right-angled triangle.
In ∆ABC, ∠B = 90°
According to Pythagoras’ theorem,
l(AC)² = l(AB)² + l(BC)²
∴ 15² = l(BC)² + 9²
∴ 225 = l(BC)² + 81
∴ 225 – 81 = l(BC)²
∴ 144 = l(BC)²
∴ 12² = l(BC)²
∴ l(BC) = 12
∴ The distance between the base of the wall and that of the ladder is 12 m.
Maharashtra Board Class 7 Maths Chapter 13 Pythagoras’ Theorem Practice Set 48 Intext Questions and Activities
Question 1.
Write the name of the hypotenuse of each of the right angled triangles shown below.
i.
![](https://talentjr.in/assets/solution/Maharashtra-Board-Class-7-Maths-Solutions-Chapter-13-Pythagoras-Theorem-Practice-Set-48-5.png?id=3)
The hypotenuse of ∆ABC is__
ii.
![](https://talentjr.in/assets/solution/Maharashtra-Board-Class-7-Maths-Solutions-Chapter-13-Pythagoras-Theorem-Practice-Set-48-6.png?id=3)
The hypotenuse of ∆LMN is__
iii.
![](https://talentjr.in/assets/solution/Maharashtra-Board-Class-7-Maths-Solutions-Chapter-13-Pythagoras-Theorem-Practice-Set-48-7.png?id=3)
The hypotenuse of ∆XYZ is__
Solution:
i. AC
ii. MN
iii. XZ
Question 2.
Draw right-angled triangles with the lengths of hypotenuse and one side as shown in the rough figures below. Measure the third side. Verify the Pythagoras’ theorem. (Textbook pg. no. 87)
![](https://talentjr.in/assets/solution/Maharashtra-Board-Class-7-Maths-Solutions-Chapter-13-Pythagoras-Theorem-Practice-Set-48-8.png?id=3)
Solution:
![](https://talentjr.in/assets/solution/Maharashtra-Board-Class-7-Maths-Solutions-Chapter-13-Pythagoras-Theorem-Practice-Set-48-9.png?id=3)
i. From the figure, by measurement,
l(AB) = 4 cm
Now, in right-angled triangle ABC,
l(AB)² + l(BC)² = (4)² + (3)²
= 16 + 9
∴ l(AB)² + l(BC)² = 25 …. (i)
l(AC)² = (5)² = 25 ….(ii)
∴ From (i) and (ii),
l(AC)² = l(AB)² + l(BC)²
∴ Pythagoras’ theorem is verified.
(Students should draw the triangles PQR and XYZ and verify the Pythagoras ’ theorem)
Question 3.
Without using a protractor, can you verify that every angle of the vacant quadrilateral in the adjacent figure is a right angle? (Textbook pg. no. 89)
Solution:
![](https://talentjr.in/assets/solution/Maharashtra-Board-Class-7-Maths-Solutions-Chapter-13-Pythagoras-Theorem-Practice-Set-48-10.png?id=3)
In the square ABCD the shaded triangles are right-angled and are the same.
In ∆LBM,
m∠BLM + m∠BML + m∠LBM = 180° …. (Sum of the measures of the angles of a triangles is 180° )
∴ m∠BLM + m∠BML + 90° = 180°
∴ m∠BLM + m∠BML = 90° …. (i)
Now, ∆LBM and ∆LAP are same.
∴ m∠BML = m∠ALP …. (ii)
∴ m∠BLM + m∠ALP = 90° …. IFrom (i) and (ii)l
Now, m∠ALP + m∠PLM + m∠BLM = 180° …. (The measure of a straight angle is 180°)
∴ m∠ALP + m∠BLM + m∠PLM = 180°
∴ 90° + m∠PLM = 180°
∴ m∠PLM = 180°- 90° = 90°
∴ m∠PLM is a right angle.
Similarly, we can prove that the other angles of the vacant quadrilateral are right angles.
Question 4.
On a sheet of card paper, draw a right-angled triangle of sides 3 cm, 4 cm and 5 cm. Construct a square on each of the sides. Find the area of each of the squares and verify Pythagoras’ theorem. (Textbook pg. no. 89)
Solution:
![](https://talentjr.in/assets/solution/Maharashtra-Board-Class-7-Maths-Solutions-Chapter-13-Pythagoras-Theorem-Practice-Set-48-11.png?id=3)
Area of square ABLM = l(AB)² = 32 = 9 sq.cm
Area of square BCPN = l(BC)²= 42 = 16 sq.cm
Area of square ACQR = l(AC)² = 52 = 25 sq.cm
Now, 25 = 16 + 9
i.e. 5² = 4² + 3²
∴ l(AC)² = l(BC)² + l(AB)²
∴ (hypotenuse)² = (base)² + (height)²