Balbharati Maharashtra State Board
11th Commerce Maths Solution Book Pdf Chapter 6 Determinants Miscellaneous Exercise 6 Questions and Answers.
Question 1.
Evaluate:
(i) \(\left|\begin{array}{ccc}
2 & -5 & 7 \\
5 & 2 & 1 \\
9 & 0 & 2
\end{array}\right|\)
Solution:

= 2(4 β 0) + 5(10 β 9) + 7(0 β 18)
= 2(4) + 5(1) + 7(-18)
= 8 + 5 β 126
= -113
(ii) \(\left|\begin{array}{ccc}
1 & -3 & 12 \\
0 & 2 & -4 \\
9 & 7 & 2
\end{array}\right|\)
Solution:

= 1(4 + 28) + 3(0 + 36) + 12(0 β 18)
= 1(32) + 3(36) + 12(-18)
= 32 + 108 β 216
= -76

Question 2.
Find the value(s) of x, if
(i) \(\left|\begin{array}{ccc}
1 & 4 & 20 \\
1 & -2 & -5 \\
1 & 2 x & 5 x^{2}
\end{array}\right|=0\)
Solution:
\(\left|\begin{array}{ccc}
1 & 4 & 20 \\
1 & -2 & -5 \\
1 & 2 x & 5 x^{2}
\end{array}\right|=0\)
β΄ 1(-10x
2 + 10x) β 4(5x
2 + 5) + 20(2x + 2) = 0
β΄ -10x
2 + 10x β 20x
2 β 20 + 40x + 40 = 0
β΄ -30x
2 + 50x + 20 = 0
β΄ 3x
2 β 5x β 2 = 0 β¦β¦[Dividing throughout by (-10)]
β΄ 3x
2 β 6x + x β 2 = 0
β΄ 3x(x β 2) + 1(x β 2) = 0
β΄ (x β 2) (3x + 1) = 0
β΄ x β 2 = 0 or 3x + 1 = 0
β΄ x = 2 or x = \(-\frac{1}{3}\)
(ii) \(\left|\begin{array}{ccc}
1 & 2 x & 4 x \\
1 & 4 & 16 \\
1 & 1 & 1
\end{array}\right|=0\)
Solution:
\(\left|\begin{array}{ccc}
1 & 2 x & 4 x \\
1 & 4 & 16 \\
1 & 1 & 1
\end{array}\right|=0\)
β΄ 1(4 β 16) β 2x(1 β 16) + 4x(1 β 4) = 0
β΄ 1(-12) β 2x(-15) + 4x(-3) = 0
β΄ -12 + 30x β 12x = 0
β΄ 18x = 12
β΄ x = \(\frac{2}{3}\)
Question 3.
By using properties of determinants, prove that \(\left|\begin{array}{ccc}
x+y & y+z & z+x \\
z & x & y \\
1 & 1 & 1
\end{array}\right|=0\).
Solution:


Question 4.
Without expanding the determinants, show that

Solution:

Question 5.
Solve the following linear equations by Cramerβs Rule.
(i) 2x β y + z = 1, x + 2y + 3z = 8, 3x + y β 4z = 1
Solution:
Given equations are
2x β y + z = 1
x + 2y + 3z = 8
3x + y β 4z = 1
D = \(\left|\begin{array}{ccc}
2 & -1 & 1 \\
1 & 2 & 3 \\
3 & 1 & -4
\end{array}\right|\)
= 2(-8 β 3) β (-1)(-4 β 9) + 1(1 β 6)
= 2(-11) + 1(-13) + 1(-5)
= -22 β 13 β 5
= -40 β 0
D
x = \(\left|\begin{array}{ccc}
1 & -1 & 1 \\
8 & 2 & 3 \\
1 & 1 & -4
\end{array}\right|\)
= 1(-8 β 3) β (-1)(-32 β 3) + 1(8 β 2)
= 1(-11) + 1(-35) + 1(6)
= -11 β 35 + 6
= -40
D
y = \(\left|\begin{array}{ccc}
2 & 1 & 1 \\
1 & 8 & 3 \\
3 & 1 & -4
\end{array}\right|\)
= 2(-32 β 3) β 1(-4 β 9) + 1(1 β 24)
= 2(-35) β 1(-13) + 1(-23)
= -70 + 13 β 23
= -80
D
z = \(\left|\begin{array}{ccc}
2 & -1 & 1 \\
1 & 2 & 8 \\
3 & 1 & 1
\end{array}\right|\)
= 2(2 β 8) β (-1)(1 β 24) + 1(1 β 6)
= 2(-6) + 1(-23) + 1(-5)
= -12 β 23 β 5
= -40
By Cramerβs Rule,
x = \(\frac{D_{x}}{D}=\frac{-40}{-40}\) = 1
y = \(\frac{\mathrm{D}_{y}}{\mathrm{D}}=\frac{-80}{-40}\) = 2
z = \(\frac{\mathrm{D}_{z}}{\mathrm{D}}=\frac{-40}{-40}\) = 1
β΄ x = 1, y = 2 and z = 1 are the solutions of the given equations.

(ii) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=-2\), \(\frac{1}{x}-\frac{2}{y}+\frac{1}{z}=3\), \(\frac{2}{x}-\frac{1}{y}+\frac{3}{z}=-1\)
Solution:
Let \(\frac{1}{x}\) = p, \(\frac{1}{y}\) = q, \(\frac{1}{z}\) = r
The given equations become
p + q + r = -2
p β 2q + r = 3
2p β q + 3r = -1
D = \(\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & -2 & 1 \\
2 & -1 & 3
\end{array}\right|\)
= 1(-6 + 1) β 1(3 β 2) + 1(-1 + 4)
= -5 β 1 + 3
= -3
D
p = \(\left|\begin{array}{rrr}
-2 & 1 & 1 \\
3 & -2 & 1 \\
-1 & -1 & 3
\end{array}\right|\)
= -2(-6 + 1) β 1(9 + 1) + 1(-3 β 2)
= 10 β 10 β 5
= -5
D
q = \(\left|\begin{array}{ccc}
1 & -2 & 1 \\
1 & 3 & 1 \\
2 & -1 & 3
\end{array}\right|\)
= 1(9 + 1) + 2(3 β 2) + 1(-1 β 6)
= 10 + 2 β 7
= 5
D
r = \(\left|\begin{array}{rrr}
1 & 1 & -2 \\
1 & -2 & 3 \\
2 & -1 & -1
\end{array}\right|\)
= 1(2 + 3) β 1(-1 β 6) β 2(-1 + 4)
= 5 + 7 β 6
= 6
By Cramerβs Rule,
p = \(\frac{\mathrm{D}_{\mathrm{p}}}{\mathrm{D}}=\frac{-5}{-3}=\frac{5}{3}\)
q = \(\frac{\mathrm{D}_{y}}{\mathrm{D}}=\frac{-80}{-40}\) = 2
r = \(\frac{D_{2}}{D}=\frac{-40}{-40}\) = 1
β΄ x = \(\frac{3}{5}\), y = \(\frac{-3}{5}\), z = \(\frac{-1}{2}\) are the solutions of the given equations.
(iii) x β y + 2z = 7, 3x + 4y β 5z = 5, 2x β y + 3z = 12
Solution:
Given equations are
x β y + 2z = 1
3x + 4y β 5z = 5
2x β y + 3z = 12
D = \(\left|\begin{array}{ccc}
1 & -1 & 2 \\
3 & 4 & -5 \\
2 & -1 & 3
\end{array}\right|\)
= 1(12 β 5) β (-1)(9 + 10) + 2(-3 β 8)
= 1(7) + 1(19) + 2(-11)
= 7 + 19 β 22
= 4 β 0
D
x = \(\left|\begin{array}{ccc}
7 & -1 & 2 \\
5 & 4 & -5 \\
12 & -1 & 3
\end{array}\right|\)
= 7(12 β 5) β (-1)(15 + 60) + 2(-5 β 48)
= 7(7)+ 1(75) +2(-53)
= 49 + 75 β 106
= 18
D
y = \(\left|\begin{array}{ccc}
1 & 7 & 2 \\
3 & 5 & -5 \\
2 & 12 & 3
\end{array}\right|\)
= 1(15 + 60) β 7(9 + 10) + 2(36 β 10)
= 1(75) β 7(19) + 2(26)
= 75 β 133 + 52
= -6
D
z = \(\left|\begin{array}{ccc}
1 & -1 & 7 \\
3 & 4 & 5 \\
2 & -1 & 12
\end{array}\right|\)
= 1(48 + 5) β (-1)(36 β 10) + 7(-3 β 8)
= 1(53)+ 1(26) + 7(-11)
= 53 + 26 β 77
= 2
By Cramerβs Rule,
x = \(\frac{\mathrm{D}_{x}}{\mathrm{D}}=\frac{18}{4}=\frac{9}{2}\)
y = \(\frac{D_{y}}{D}=\frac{-6}{4}=\frac{-3}{2}\)
z = \(\frac{D_{z}}{D}=\frac{2}{4}=\frac{1}{2}\)
β΄ x = \(\frac{9}{2}\), y = \(\frac{-3}{2}\) and z = \(\frac{1}{2}\) are the solutions of the given equations.

Question 6.
Find the value(s) of k, if the following equations are consistent.
(i) 3x + y β 2 = 0, kx + 2y β 3 = 0 and 2x β y = 3
Solution:
Given equations are
3x + y β 2 = 0
kx + 2y β 3 = 0
2x β y = 3 i.e. 2x β y β 3 = 0
Since, these equations are consistent.
β΄ \(\left|\begin{array}{rrr}
3 & 1 & -2 \\
k & 2 & -3 \\
2 & -1 & -3
\end{array}\right|=0\)
β΄ 3(-6 β 3) β 1(-3k + 6) β 2(-k β 4) = 0
β΄ 3(-9) β 1 (-3k + 6) β 2(-k β 4) = 0
β΄ -27 + 3k β 6 + 2k + 8 = 0
β΄ 5k β 25 = 0
β΄ k = 5
(ii) kx + 3y + 4 = 0, x + ky + 3 = 0, 3x + 4y + 5 = 0
Solution:
Given equations are
kx + 3y + 4 = 0
x + ky + 3 = 0
3x + 4y + 5 = 0
Since, these equations are consistent.
β΄ \(\left|\begin{array}{lll}
\mathrm{k} & 3 & 4 \\
1 & \mathrm{k} & 3 \\
3 & 4 & 5
\end{array}\right|=0\)
β΄ k(5k β 12) β 3(5 β 9) + 4(4 β 3k) = 0
β΄ 5k
2 β 12k + 12 + 16 β 12k = 0
β΄ 5k
2 β 24k + 28 = 0
β΄ 5k
2 β 10k β 14k + 28 = 0
β΄ 5k(k β 2) β 14(k β 2) = 0
β΄ (k β 2) (5k β 14) = 0
β΄ k β 2 = 0 or 5k β 14 = 0
β΄ k = 2 or k = \(\frac{14}{5}\)
Question 7.
Find the area of triangles whose vertices are
(i) A(-1, 2), B(2, 4), C(0, 0)
Solution:
Here, A(x
1, y
1) β‘ A(-1, 2), B(x
2, y
2) β‘ B(2, 4), C(x
3, y
3) β‘ C(0, 0)
Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\)
β΄ A(βABC) = \(\frac{1}{2}\left|\begin{array}{ccc}
-1 & 2 & 1 \\
2 & 4 & 1 \\
0 & 0 & 1
\end{array}\right|\)
= \(\frac{1}{2}\) [-1(4 β 0) β 2(2 β 0) + 1(0 β 0)]
= \(\frac{1}{2}\) (-4 β 4)
= \(\frac{1}{2}\) (-8)
= -4
Since, area cannot be negative.
β΄ A(βABC) = 4 sq.units
(ii) P(3, 6), Q(-1, 3), R(2, -1)
Solution:
Here, P(x
1, y
1) β‘ P(3, 6), Q(x
2, y
2) β‘ Q(-1, 3), R(x
3, y
3) β‘ R(2, -1)
Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\)
A(βPQR) = \(\frac{1}{2}\left|\begin{array}{ccc}
3 & 6 & 1 \\
-1 & 3 & 1 \\
2 & -1 & 1
\end{array}\right|\)
= \(\frac{1}{2}\) [3(3 + 1) β 6(-1 β 2) + 1(1 β 6)]
= \(\frac{1}{2}\) [3(4) β 6(-3) + 1(-5)]
= \(\frac{1}{2}\) (12 + 18 β 5)
β΄ A(βPQR) = \(\frac{25}{2}\) sq.units

(iii) L(1, 1), M(-2, 2), N(5, 4)
Solution:
Here, L(x
1, y
1) β‘ L(1, 1), M(x
2, y
2) β‘ M(-2, 2), N(x
3, y
3) β‘ N(5, 4)
Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\)
A(βLMN) = \(\frac{1}{2}\left|\begin{array}{rrr}
1 & 1 & 1 \\
-2 & 2 & 1 \\
5 & 4 & 1
\end{array}\right|\)
= \(\frac{1}{2}\) [1(2 β 4) -1(-2 β 5) + 1(-8 β 10)]
= \(\frac{1}{2}\) [1(-2) β 1(-7) + 1(-18)]
= \(\frac{1}{2}\) (-2 + 7 β 18)
= \(\frac{-13}{2}\)
Since, area cannot be negative.
β΄ A(βLMN) = \(\frac{13}{2}\) sq.units
Question 8.
Find the value of k,
(i) if the area of βPQR is 4 square units and vertices are P(k, 0), Q(4, 0), R(0, 2).
Solution:
Here, P(x
1, y
1) β‘ P(k, 0), Q(x
2, y
2) β‘ Q(4, 0), R(x
3, y
3) β‘ R(0, 2)
A(βPQR) = 4 sq.units
Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\)
β΄ Β±4 = \(\frac{1}{2}\left|\begin{array}{lll}
k & 0 & 1 \\
4 & 0 & 1 \\
0 & 2 & 1
\end{array}\right|\)
β΄ Β±4 = \(\frac{1}{2}\) [k(0 β 2) β 0 + 1(8 β 0)]
β΄ Β±8 = -2k + 8
β΄ 8 = -2k + 8 or -8 = -2k + 8
β΄ -2k = 0 or 2k = 16
β΄ k = 0 or k = 8

(ii) if area of βLMN is \(\frac{33}{2}\) square units and vertices are L(3, -5), M(-2, k), N(1, 4).
Solution:
Here, L(x
1, y
1) β‘ L(3, -5), M(x
2, y
2) β‘ M(-2, k), N(x
3, y
3) β‘ N(1, 4)
A(βLMN) = \(\frac{33}{2}\) sq.units
Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\)
β΄ \(\pm \frac{33}{2}=\frac{1}{2}\left|\begin{array}{ccc}
3 & -5 & 1 \\
-2 & \mathrm{k} & 1 \\
1 & 4 & 1
\end{array}\right|\)
β΄ Β±\(\frac{33}{2}\) = \(\frac{1}{2}\) [3(k β 4) β (-5) (-2 β 1) + 1(-8 β k)]
β΄ Β±33 = 3k β 12 β 15 β 8 β k
β΄ 33 = 2k β 35
β΄ 2k β 35 = 33 or 2k β 35 = -33
β΄ 2k = 68 or 2k = 2
β΄ k = 34 or k = 1