Balbharti
12th Maharashtra State Board Maths Solutions Book Pdf Chapter 1 Differentiation Ex 1.1 Questions and Answers.
Question 1.
Differentiate the following w.r.t. x :
(i) (x
3 β 2x β 1)
5
Solution:
Method 1:
Let y = (x
3 β 2x β 1)
5
Put u = x
3 β 2x β 1. Then y = u
5

Method 2:
Let y = (x
3 β 2x β 1)
5
Differentiating w.r.t. x, we get

(ii) \(\left(2 x^{\frac{3}{2}}-3 x^{\frac{4}{3}}-5\right)^{\frac{5}{2}}\)
Solution:
Let y = \(\left(2 x^{\frac{3}{2}}-3 x^{\frac{4}{3}}-5\right)^{\frac{5}{2}}\)
Differentiating w.r.t. x, we get

(iii) \(\sqrt{x^{2}+4 x-7}\)
Solution:


(iv) \(\sqrt{x^{2}+\sqrt{x^{2}+1}}\)
Solution:
Let y = \(\sqrt{x^{2}+\sqrt{x^{2}+1}}\)
Differentiating w.r.t. x, we get

(v) \(\frac{3}{5 \sqrt[3]{\left(2 x^{2}-7 x-5\right)^{5}}}\)
Solution:
Let y = \(\frac{3}{5 \sqrt[3]{\left(2 x^{2}-7 x-5\right)^{5}}}\)
Differentiating w.r.t. x, we get

(vi) \(\left(\sqrt{3 x-5}-\frac{1}{\sqrt{3 x-5}}\right)^{5}\)
Solution:
Let y = \(\left(\sqrt{3 x-5}-\frac{1}{\sqrt{3 x-5}}\right)^{5}\)
Differentiating w.r.t. x, we get


Question 2.
Diffrentiate the following w.r.t. x
(i) cos(x
2 + a
2)
Solution:
Let y = cos(x
2 + a
2)
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)[cos(x
2 + a
2)]
= -sin(x
2 + a
2)β\(\frac{d}{d x}\)x
2 + a
2)
= -sin(x
2 + a
2)β(2x + 0)
= -2xsin(x
2 + a
2)
(ii) \(\sqrt{e^{(3 x+2)}+5}\)
Solution:
Let y = \(\sqrt{e^{(3 x+2)}+5}\)
Differentiating w.r.t. x, we get

(iii) log[tan(\(\frac{x}{2}\))]
Solution:
Let y = log[tan(\(\frac{x}{2}\))]
Differentiating w.r.t. x, we get


(iv) \(\sqrt{\tan \sqrt{x}}\)
Solution:
Let y = \(\sqrt{\tan \sqrt{x}}\)
Differentiating w.r.t. x, we get

(v) cot
3[log (x
3)]
Solution:
Let y = cot
3[log (x
3)]
Differentiating w.r.t. x, we get

(vi) 5
sin3x+ 3
Solution:
Let y = 5
sin3x+ 3
Differentiating w.r.t. x, we get


(vii) cosec (\(\sqrt{\cos X}\))
Solution:
Let y = cosec (\(\sqrt{\cos X}\))
Differentiating w.r.t. x, we get

(viii) log[cos (x
3 β 5)]
Solution:
Let y = log[cos (x
3 β 5)]
Differentiating w.r.t. x, we get

(ix) e
3 sin2x β 2 cos2x
Solution:
Let y = e
3 sin2x β 2 cos2x
Differentiating w.r.t. x, we get


(x) cos
2[log (x
2+ 7)]
Solution:
Let y = cos
2[log (x
2+ 7)]
Differentiating w.r.t. x, we get

(xi) tan[cos (sinx)]
Solution:
Let y = tan[cos (sinx)]
Differentiating w.r.t. x, we get

(xii) sec[tan (x
4 + 4)]
Solution:
Let y = sec[tan (x
4 + 4)]
Differentiating w.r.t. x, we get

= sec[tan(x
4 + 4)]βtan[tan(x
4 + 4)]βsec
2(x
4 + 4)(4x
3 + 0)
= 4x
3sec
2(x
4 + 4)βsec[tan(x
4 + 4)]βtan[tan(x
4 + 4)].
(xiii) e
log[(logx)2 β logx2]
Solution:
Let y = e
log[(logx)2 β logx2]
= (log x)
2 β log x
2 β¦[β΅ e
log x = x]
Differentiating w.r.t. x, we get


(xiv) sin\(\sqrt{\sin \sqrt{x}}\)
Solution:
Let y = sin\(\sqrt{\sin \sqrt{x}}\)
Differentiating w.r.t. x, we get

(xv) log[sec(e
x2)]
Solution:
Let y = log[sec(e
x2)]
Differentiating w.r.t. x, we get

(xvi) log
e2(logx)
Solution:
Let y = log
e2(logx) = \(\frac{\log (\log x)}{\log e^{2}}\)

(xvii) [log{log(logx)}]
2
Solution:
let y = [log{log(logx)}]
2
Differentiating w.r.t. x, we get


(xviii) sin
2x
2 β cos
2x
2
Solution:
Let y = sin
2x
2 β cos
2x
2
Differentiating w.r.t. x, we get

= 2sinx
2βcosx
2 Γ 2x + 2sinx
2βcosx
2 Γ 2x
= 4x(2sinx
2βcosx
2)
= 4xsin(2x
2).
Question 3.
Diffrentiate the following w.r.t. x
(i) (x
2 + 4x + 1)
3 + (x
3 β 5x β 2)
4
Solution:
Let y = (x
2 + 4x + 1)
3 + (x
3 β 5x β 2)
4
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)[(x
2 + 4x + 1)
3 + (x
3 β 5x β 2)
4]
= \(\frac{d}{d x}\) = (x
2 + 4x + 1)
3 + \(\frac{d}{d x}\)(x
3 β 5x β 2)
4
= 3(x
2 + 4x + 1)
2β\(\frac{d}{d x}\)(x
2 + 4x + 1) + 4(x
3 β 5x β 2)
4β\(\frac{d}{d x}\)(x
3 β 5x β 2)
= 3(x
2 + 4x + 1)
3β(2x + 4 Γ 1 + 0) + 4(x
3 β 5x β 2)
3β(3x
2 β 5 Γ 1 β 0)
= 6 (x + 2)(x
2 + 4x + 1)
2 + 4 (3x
2 β 5)(x
3 β 5x β 2)
3.
(ii) (1 + 4x)
5(3 + x β x
2)
8
Solution:
Let y = (1 + 4x)
5(3 + x β x
2)
8
Differentiating w.r.t. x, we get

= 8 (1 + 4x)
5 (3 + x β x
2)
7β(0 + 1 β 2x) + 5 (1 + 4x)
4 (3 + x β x
2)
8β(0 + 4 Γ 1)
= 8 (1 β 2x)(1 + 4x)
5(3 + x β x
2)
7 + 20(1 + 4x)
4(3 + x β x
2)
8.
(iii) \(\frac{x}{\sqrt{7-3 x}}\)
Solution:
Let y = \(\frac{x}{\sqrt{7-3 x}}\)
Differentiating w.r.t. x, we get


(iv) \(\frac{\left(x^{3}-5\right)^{5}}{\left(x^{3}+3\right)^{3}}\)
Solution:
Let y = \(\frac{\left(x^{3}-5\right)^{5}}{\left(x^{3}+3\right)^{3}}\)
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\left[\frac{\left(x^{3}-5\right)^{5}}{\left(x^{3}+3\right)^{3}}\right]\)

(v) (1 + sin
2x)
2(1 + cos
2x)
3
Solution:
Let y = (1 + sin
2x)
2(1 + cos
2x)
3
Differentiating w.r.t. x, we get

= 3(1 + sin
2x)
2 (1 + cos
2x)
2β[2cosx(-sinx)] + 2 (1 + sin
2x)(1 + cos
2x)
3β[2sinx-cosx]
= 3 (1 + sin
2x)
2 (1 + cos
2x)
2 (-sin 2x) + 2(1 + sin
2x)(1 + cos
2x)
3(sin 2x)
= sin2x (1 + sin
2x) (1 + cos
2x)
2 [-3(1 + sin
2x) + 2(1 + cos
2x)]
= sin2x (1 + sin
2x)(1 + cos
2x)
2(-3 β 3sin
2x + 2 + 2cos
2x)
= sin2x (1 + sin
2x)(1 + cos
2x)
2 [-1 β 3 sin
2x + 2 (1 β sin
2x)]
= sin 2x(1 + sin
2x)(1 + cos
2x)
2 (-1 β 3 sin
2x + 2 β 2 sin
2x)
= sin2x (1 + sin
2x)(1 + cos
2x)
2(1 β 5 sin
2x).
(vi) \(\sqrt{\cos x}+\sqrt{\cos \sqrt{x}}\)
Solution:
Let y = \(\sqrt{\cos x}+\sqrt{\cos \sqrt{x}}\)
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}[\sqrt{\cos x}+\sqrt{\cos \sqrt{x}}]\)

(vii) log(sec 3x+ tan 3x)
Solution:
Let y = log(sec 3x+ tan 3x)
Differentiating w.r.t. x, we get

(viii) \(\frac{1+\sin x^{\circ}}{1-\sin x^{\circ}}\)
Solution:


(ix) cot\(\left(\frac{\log x}{2}\right)\) β log\(\left(\frac{\cot x}{2}\right)\)
Solution:
Let y = cot\(\left(\frac{\log x}{2}\right)\) β log\(\left(\frac{\cot x}{2}\right)\)
Differentiating w.r.t. x, we get

(x) \(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\)
Solution:

(xi) \(\frac{e^{\sqrt{x}}+1}{e^{\sqrt{x}}-1}\)
Solution:
let y = \(\frac{e^{\sqrt{x}}+1}{e^{\sqrt{x}}-1}\)
Differentiating w.r.t. x, we get

(xii) log[tan
3xΒ·sin
4xΒ·(x
2 + 7)
7]
Solution:
Let y = log [tan
3xΒ·sin
4xΒ·(x
2 + 7)
7]
= log tan
3x + log sin
4x + log (x
2 + 7)
7
= 3 log tan x + 4 log sin x + 7 log (x
2 + 7)
Differentiating w.r.t. x, we get

= 6cosec2x + 4 cotx + \(\frac{14 x}{x^{2}+7}\)

(xiii) log\(\left(\sqrt{\frac{1-\cos 3 x}{1+\cos 3 x}}\right)\)
Solution:

(xiv) log\(\left(\sqrt{\left.\frac{1+\cos \left(\frac{5 x}{2}\right)}{1-\cos \left(\frac{5 x}{2}\right)}\right)}\right.\)
Solution:
Using log\(\left(\frac{a}{b}\right)\) = log a β log b
log a
b = b log a

\(-\frac{5}{2}\)cosec\(\left(\frac{5 x}{2}\right)\)
(xv) log\(\left(\sqrt{\frac{1-\sin x}{1+\sin x}}\right)\)
Solution:


(xvi) log\(\left[4^{2 x}\left(\frac{x^{2}+5}{\sqrt{2 x^{3}-4}}\right)^{\frac{3}{2}}\right]\)
Solution:

(xvii) log\(\left[\frac{e^{x^{2}}(5-4 x)^{\frac{3}{2}}}{\sqrt[3]{7-6 x}}\right]\)
Solution:

(xviii) log\(\left[\frac{a^{\cos x}}{\left(x^{2}-3\right)^{3} \log x}\right]\)
Solution:

(xix) y= (25)
log5(secx) β (16)
log4(tanx)
Solution:
y = (25)
log5(secx) β (16)
log4(tanx)
= 5
2log5(secx) β 4
2log4(tanx)
= 5
log5(sec5x) β 4
log4(tan2x)
= sec
2x β tan
2x β¦ [β΅ = x]
β΄ y = 1
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)(1) = 0
(xx) \(\frac{\left(x^{2}+2\right)^{4}}{\sqrt{x^{2}+5}}\)
Solution:
Let y = \(\frac{\left(x^{2}+2\right)^{4}}{\sqrt{x^{2}+5}}\)
Differentiating w.r.t. x, we get


Question 4.
A table of values of f, g, f β and gβ is given

(i) If r(x) = f [g(x)] find rβ (2).
Solution:
r(x) = f[g(x)]
β΄ r'(x) = \(\frac{d}{d x}\)f[g(x)]
= f'[g(x)]β\(\frac{d}{d x}\)[g(x)]
= f'[g(x)β[g'(x)]
β΄ r'(2) = f'[g(2)]βg'(2)
= f'(6)βg'(2) β¦ [β΅ g(x) = 6, when x = 2]
= -4 Γ 4 β¦ [From the table]
= -16.
(ii) If R(x) = g[3 + f(x)] find Rβ (4).
Solution:
R(x) = g[3 + f(x)]
β΄ R'(x) = \(\frac{d}{d x}\){g[3+f(x)]}
= g'[3 + f(x)]β\(\frac{d}{d x}\)[3 + f(x)]
= g'[3 +f(x)]β[0 + f'(x)]
= g'[3 + f(x)]βf'(x)
β΄ R'(4) = g'[3 + f(4)]βf'(4)
= g'[3 + 3]βf'(4) β¦ [β΅ f(x) = 3, when x = 4]
= g'(6)βf'(4)
= 7 Γ 5 β¦ [From the table]
= 35.

(iii) If s(x) = f[9β f(x)] find sβ (4).
Solution:
s(x) = f[9β f(x)]
β΄ s'(x) = \(\frac{d}{d x}\){f[9 β f(x)]}
= f'[9 β f(x)]β\(\frac{d}{d x}\)[0 β f(x)]
= f'[9 β f(x)]β[0 β f'(x)]
= -f'[9 β f(x)] β f'(x)
β΄ s'(4) = -f'[9 β f(4)] β f'(4)
= -f'[9 β 3] β f'(4) β¦ [β΅ f(x) = 3, when x = 4]
= -f'(6) β f'(4)
= -(-4)(5) β¦ [From the table]
= 20.
(iv) If S(x) = g[g(x)] find Sβ (6)
Solution:
S(x) = g[g(x)]
β΄ S'(x) = \(\frac{d}{d x}\)g[g(x)]
= g'[g(x)]β\(\frac{d}{d x}\)[g(x)]
= g'[g(x)]βg'(x)
β΄ S β(6) = g'[g'(6)]βg'(6)
= g'(2)βg'(6) β¦ [β΅ g (x) = 2, when x = 6]
= 4 Γ 7 β¦ [From the table]
= 28.

Question 5.
Assume that f β(3) = -1, g'(2) = 5, g(2) = 3 and y = f[g(x)] then \(\left[\frac{d y}{d x}\right]_{x=2}\) = ?
Solution:
y = f[g(x)]
β΄ \(\frac{d y}{d x}\) = \(\frac{d}{d x}\){[g(x)]}

Question 6.
If h(x) = \(\sqrt{4 f(x)+3 g(x)}\), f(1) = 4, g(1) = 3, f β(1) = 3, g'(1) = 4 find h'(1).
Solution:
Given f(1) = 4, g(1) = 3, f β(1) = 3, g'(1) = 4 β¦..(1)

Question 7.
Find the x co-ordinates of all the points on the curve y = sin 2x β 2 sin x, 0 β€ x < 2Ο where \(\frac{d y}{d x}\) = 0.
Solution:
y = sin 2x β 2 sin x, 0 β€ x < 2Ο

= cos2x Γ 2 β 2cosx
= 2 (2 cos
2x β 1) β 2 cosx
= 4 cos
2x β 2 β 2 cos x
= 4 cos
2x β 2 cos x β 2
If \(\frac{d y}{d x}\) = 0, then 4 cos
2x β 2 cos x β 2 = 0
β΄ 4cos
2x β 4cosx + 2cosx β 2 = 0
β΄ 4 cosx (cosx β 1) + 2 (cosx β 1) = 0
β΄ (cosx β 1)(4cosx + 2) = 0
β΄ cosx β 1 = 0 or 4cosx + 2 = 0
β΄ cos x = 1 or cos x = \(-\frac{1}{2}\)
β΄ cos x = cos 0


Question 8.
Select the appropriate hint from the hint basket and fill up the blank spaces in the following paragraph. [Activity]
βLet f (x) = x
2 + 5 and g(x) = e
x + 3 then
f [g(x)] = _ _ _ _ _ _ _ _ and g [f(x)] =_ _ _ _ _ _ _ _.
Now f β(x) = _ _ _ _ _ _ _ _ and g'(x) = _ _ _ _ _ _ _ _.
The derivative off [g (x)] w. r. t. x in terms of f and g is _ _ _ _ _ _ _ _.
Therefore \(\frac{d}{d x}\)[f[g(x)]] = _ _ _ _ _ _ _ _ _ and [\(\frac{d}{d x}\)[f[g(x)]]]
x = 0 = _ _ _ _ _ _ _ _ _ _ _.
The derivative of g[f(x)] w. r. t. x in terms of f and g is _ _ _ _ _ _ __ _ _ _ _.
Therefore \(\frac{d}{d x}\)[g[f(x)]] = _ _ _ _ _ _ _ _ _ and [\(\frac{d}{d x}\)[g[f(x)]]]
x = 1 = _ _ _ _ _ _ _ _ _ _ _.β
Hint basket : { f β[g(x)]Β·g'(x), 2e
2x + 6e
x, 8, g'[f(x)]Β·f β(x), 2xe
x2 + 5, -2e
6, e
2x + 6e
x + 14, e
x2 + 5 + 3, 2x, e
x}
Solution:
f[g(x)] = e
2x + 6e
x + 14
g[f(x)] = e
x2 + 5 + 3
f'(x) = 2x, gβf(x) = e
x
The derivative of f[g(x)] w.r.t. x in terms of and g is f'[g(x)]βg'(x).
β΄ \(\frac{d}{d x}\){f[g(x)]} = 2e
2x + 6e
x and \(\frac{d}{d x}\){f[g(x)]}
x = 0 = 8
The derivative of g[f(x)] w.r.t. x in terms of f and g is gβf(x)]βf'(x).
β΄ \(\frac{d}{d x}\){g[(f(x)]} = 2xe
x2 + 5 and
\(\frac{d}{d x}\){g[(f(x)]}
x = -1 = -2e
6.