Processing math: 100%

Differentiation Class 12 Maths 2 Exercise 1.5 Solutions Maharashtra Board

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 1 Differentiation Ex 1.5 Questions and Answers.

12th Maths Part 2 Differentiation Exercise 1.5 Questions And Answers Maharashtra Board

Question 1.
Find the second order derivatives of the following:
(i) 2x 5 – 4x 3 2x2 – 9
Solution:
Let y = 2x 5 – 4x 3 2x2 – 9
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q1-i
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q1-i.1

(ii) e 2x . tan x
Solution:
Let y = e 2x . tan x
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q1-ii
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q1-ii.1

Maharashtra-Board-Solutions

(iii) e 4x . cos 5x
Solution:
Let y = e 4x . cos 5x
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q1-iii
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q1-iii.1

(iv) x 3 . log x
Solution:
Let y = x 3 . log x
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q1-iv

(v) log(log x)
Solution:
Let y = log(log x)
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q1-v
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q1-v.1

(vi) x x
Solution:
y = x x
log y = log x x = x log x
Differentiating both sides w.r.t. x, we get
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q1-vi

Question 2.
Find d2ydx2 of the following:
(i) x = a(θ – sin θ), y = a (1 – cos θ)
Solution:
x = a(θ – sin θ), y = a (1 – cos θ)
Differentiating x and y w.r.t. θ, we get
dxdθ=addθ(θsinθ) = a(1 – cos θ) …….(1)
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q2-i

(ii) x = 2at 2 , y = 4at
Solution:
x = 2at 2 , y = 4at
Differentiating x and y w.r.t. t, we get
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q2-ii

Maharashtra-Board-Solutions

(iii) x = sin θ, y = sin 3 θ at θ = π2
Solution:
x = sin θ, y = sin 3 θ
Differentiating x and y w.r.t. θ, we get,
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q2-iii
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q2-iii.1

(iv) x = a cos θ, y = b sin θ at θ = π4
Solution:
x = a cos θ, y = b sin θ
Differentiating x and y w.r.t. θ, we get
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q2-iv
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q2-iv.1
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q2-iv.2

Question 3.
(i) If x = at 2 and y = 2at, then show that xyd2ydx2+a=0
Solution:
x = at 2 , y = 2at ………(1)
Differentiating x and y w.r.t. t, we get
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-i
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-i.1

(ii) If y = emtan1x, show that (1+x2)d2ydx2+(2xm)dydx=0
Solution:
y = emtan1x ……..(1)
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-ii

(iii) If x = cos t, y = e mt , show that (1x2)d2ydx2xdydxm2y=0
Solution:
x = cos t, y = e mt
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-iii
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-iii.1

Maharashtra-Board-Solutions

(iv) If y = x + tan x, show that cos2xd2ydx22y+2x=0
Solution:
y = x + tan x
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-iv

(v) If y = e ax . sin (bx), show that y 2 – 2ay 1 + (a 2 + b 2 )y = 0.
Solution:
y = e ax . sin (bx) ………(1)
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-v
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-v.1

(vi) If sec1(7x35y37x3+5y3)=m, show that d2ydx2=0
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-vi
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-vi.1
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-vi.2

(vii) If 2y = x+1+x1, show that 4(x 2 – 1)y 2 + 4xy 1 – y = 0.
Solution:
2y = x+1+x1 …… (1)
Differentiating both sides w.r.t. x, we get
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-vii
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-vii.1

(viii) If y = log(x+x2+a2)m, show that (x2+a2)d2ydx2+xdydx=0
Solution:
y = log(x+x2+a2)m = mlog(x+x2+a2)
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-viii
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-viii.1

Maharashtra-Board-Solutions

(ix) If y = sin(m cos -1 x), then show that (1x2)d2ydx2xdydx+m2y=0
Solution:
y = sin(m cos -1 x)
sin -1 y = m cos -1 x
Differentiating both sides w.r.t. x, we get
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-ix

(x) If y = log(log 2x), show that xy 2 + y 1 (1 + xy 1 ) = 0.
Solution:
y = log(log 2x)
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-x
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-x.1
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-x.2

(xi) If x 2 + 6xy + y 2 = 10, show that d2ydx2=80(3x+y)3
Solution:
x 2 + 6xy + y 2 = 10 …… (1)
Differentiating both sides w.r.t. x, we get
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-xi
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-xi.1
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-xi.2

(xii) If x = a sin t – b cos t, y = a cos t + b sin t, Show that d2ydx2=x2+y2y3
Solution:
x = a sin t – b cos t, y = a cos t + b sin t
Differentiating x and y w.r.t. t, we get
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-xii
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q3-xii.1

Maharashtra-Board-Solutions

Question 4.
Find the nth derivative of the following:
(i) (ax + b) m
Solution:
Let y = (ax + b) m
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-i
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-i.1
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-i.2

(ii) 1x
Solution:
Let y = 1x
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-ii

(iii) e ax+b
Solution:
Let y = e ax+b
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-iii
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-iii.1

(iv) a px+q
Solution:
Let y = a px+q
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-iv

Maharashtra-Board-Solutions

(v) log(ax + b)
Solution:
Let y = log(ax + b)
Then dydx=ddx[log(ax+b)]
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-v

(vi) cos x
Solution:
Let y = cos x
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-vi

(vii) sin(ax + b)
Solution:
Let y = sin(ax + b)
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-vii
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-vii.1

(viii) cos(3 – 2x)
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-viii
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-viii.1

(ix) log(2x + 3)
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-ix
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-ix.1

(x) 13x5
Solution:
Let y = 13x5
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-x
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-x.1

Maharashtra-Board-Solutions

(xi) y = e ax . cos (bx + c)
Solution:
y = e ax . cos (bx + c)
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-xi
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-xi.1
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-xi.2
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-xi.3
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-xi.4

(xii) y = e 8x . cos (6x + 7)
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-xii
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-xii.1
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-xii.2
Maharashtra-Board-12th-Maths-Solutions-Chapter-1-Differentiation-Ex-1.5-Q4-xii.3