Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 Questions and Answers.
12th Maths Part 1 Trigonometric Functions Miscellaneous Exercise 3 Questions And Answers Maharashtra Board
I) Select the correct option from the given alternatives.
Question 1.
The principal of solutions equation sinθ = −12 are ________.
Solution:
(b) 7π6,11π6
Question 2.
The principal solution of equation cot θ = √3 ___________.
Solution:
(a) π6,7π6
Question 3.
The general solution of sec x = √2 is __________.
(a) 2nπ ± π4, n ∈ Z
(b) 2nπ ± π2, n ∈ Z
(c) nπ ± π2, n ∈ Z
(d) 2nπ ± π3, n ∈ Z
Solution:
(a) 2nπ ± π4, n ∈ Z
Question 4.
If cos pθ = cosqθ, p ≠ q rhen ________.
(a) θ = 2nπp±q
(b) θ = 2nπ
(c) θ = 2nπ ± p
(d) nπ ± q
Solution:
(a) θ = 2nπp±q
Question 5.
If polar co-ordinates of a point are (2,π4) then its cartesian co-ordinates are ______.
(a) (2, √2 )
(b) (√2, 2)
(c) (2, 2)
(d) (√2 , √2)
Solution:
(d) (√2 , √2)
Question 6.
If √3 cosx – sin x = 1, then general value of x is _________.
(a) 2nπ ± π3
(b) 2nπ ± π6
(c) 2nπ ± π3−π6
(d) nπ + (-1)
n
π3
Solution:
(c) 2nπ ± π3−π6
Question 7.
In ∆ABC if ∠A = 45°, ∠B = 60° then the ratio of its sides are _________.
(a) 2 : π2 : π3 + 1
(b) π2 : 2 : π3 + 1
(c) 2 π2 : π2 : π3
(d) 2 : 2 π2 : π3 + 1
Solution:
(a) 2 : π2 : π3 + 1
Question 8.
In ∆ABC, if c
2
+ a
2
– b
2
= ac, then ∠B = __________.
(a) π4
(b) π3
(c) π2
(d) π6
Solution:
(b) π3
Question 9.
In ABC, ac cos B – bc cos A = ____________.
(a) a
2
– b
2
(b) b
2
– c
2
(c) c
2
– a
2
(d) a
2
– b
2
– c
2
Solution:
(a) a
2
– b
2
Question 10.
If in a triangle, the are in A.P. and b : c = √3 : √2 then A is equal to __________.
(a) 30°
(b) 60°
(c) 75°
(d) 45°
Solution:
(c) 75°
Question 11.
cos
-1
(cos7π6) = ________.
Question 12.
The value of cot (tan
-1
2x + cot
-1
2x) is __________.
(a) 0
(b) 2x
(c) π + 2x
(d) π – 2x
Solution:
(a) 0
Question 13.
The principal value of sin
-1
(−√32) is ____________.
Solution:
(d) −π3
Question 14.
If sin
-1
45 + cos
-1
,1213 = sin
-1
∝, then ∝ = _____________.
(a) 6365
(b) 6265
(c) 6165
(d) 6065
Solution:
(a) 6365
Question 15.
If tan
-1
(2x) + tan
-1
(3x) = π4, then x = ________.
(a) -1
(b) 16
(c) 26
(d) 32
Solution:
(b) 16
Question 16.
2 tan
-1
13 + tan
-1
17 = ______.
(a) tan
-1
45
(b) π2
(c) 1
(d) π4
Solution:
(d) π4
Question 17.
tan (2 tan
-1
(15)−π4) = ______.
(a) 177
(b) −177
(c) 717
(d) −717
Solution:
(d) −717
Question 18.
The principal value branch of sec
-1
x is __________.
Solution:
(b) [0, π] – {π2}
Question 19.
cos[tan
-1
13 + tan
-1
12] = ________.
(a) 1√2
(b) √32
(c) 12
(d) π4
Solution:
(a) 1√2
Question 20.
If tan θ + tan 2θ + tan 3θ = tan θ∙tan 2θ∙tan 3θ, then the general value of the θ is _______.
(a) nπ
(b) nπ6
(c) nπ ± nπ4
(d) nπ2
Solution:
(b) nπ6
[Hint: tan(A + B + C) = tanA+tanB+tanC−tanA⋅tanB⋅tanC1−tanA⋅tanB−tanB⋅tanC−tanC⋅tanA
Since , tan θ + tan 2θ + tan 3θ = tan θ ∙ tan 2θ ∙ tan 3θ,
we get, tan (θ + 2θ + 3θ) = θ
∴ tan6θ = 0
∴ 6θ = nπ, θ = nπ6.]
Question 21.
If any ∆ABC, if a cos B = b cos A, then the triangle is ________.
(a) Equilateral triangle
(b) Isosceles triangle
(c) Scalene
(d) Right angled
Solution:
(b) Isosceles triangle
II: Solve the following
Question 1.
Find the principal solutions of the following equations :
(i) sin2θ = −12
Solution:
sin2θ = −12
Since, θ ∈ (0, 2π), 2∈ ∈ (0, 4π)
(ii) tan3θ = -1
Solution:
Since, θ ∈ (0, 2π), 3∈ ∈ (0, 6π)
… [∵ tan(π – θ) = tan(2π – θ) = tan(3π – θ)
= tan (4π – θ) = tan (5π – θ) = tan (6π – θ) = -tan θ]
∴ tan3θ = tan3π4 = tan7π4 = tan11π4 = tan15π4
(iii) cotθ = 0
Solution:
cotθ = 0
Since θ ∈ (0, 2π),
cotθ = 0 = cot π2 = cot (π + π2 …[∵ cos(π + θ) = cotθ]
∴ cotθ = cotπ2 = cot3π2
∴ θ = π2 or θ = 3π2
Hence, the required principal solutions are {π2,3π2}
Question 2.
Find the principal solutions of the following equations :
(i) sin2θ = −1√2
Solution:
(ii) tan5θ = -1
Solution:
(iii) cot2θ = 0
Solution:
Question 3.
Which of the following equations have no solutions ?
(i) cos 2θ = 13
Solution:
cos 2θ = 13
Since 13 ≤ cosθ ≤ 1 for any θ
cos2θ = 13 has solution
(ii) cos
2
θ = -1
Solution:
cos2θ = -1
This is not possible because cos2θ ≥ 0 for any θ.
∴ cos2θ = -1 does not have any solution.
(iii) 2 sinθ = 3
Solution:
2 sin θ = 3 ∴ sin θ = 32
This is not possible because -1 ≤ sin θ ≤ 1 for any θ.
∴ 2 sin θ = 3 does not have any solution.
(iv) 3 sin θ = 5
Solution:
3 sin θ = 5
∴ sin θ = 53
This is not possible because -1 ≤ sin θ ≤ 1 for any θ.
∴ 3 sin θ = 5 does not have any solution.
Question 4.
Find the general solutions of the following equations :
(i) tanθ = −√x
Solution:
The general solution of tan θ = tan ∝ is
θ = nπ + ∝, n ∈ Z.
Now, tanθ = −√x
∴ tanθ = tanπ3 …[∵ tanπ3 = √3]
∴ tanθ = tan(π−π3) …[∵ tan(π – θ) = -tanθ]
∴ tanθ = tan2π3
∴ the required general solution is
θ = nπ + 2π3, n ∈ Z.
(ii) tan
2
θ = 3
Solution:
The general solution of tan
2
θ = tan
2
∝ is
θ = nπ ± ∝, n ∈ Z.
Now, tan
2
θ = 3 = (√x)
2
∴ tan
2
θ = (tanπ3)
2
…[∵ tanπ3 = √3]
∴ tan
2
θ = tan
2
π3
∴ the required general solution is
θ = nπ ± π3, n ∈ Z.
(iii) sin θ – cosθ = 1
Solution:
∴ cosθ – sin θ = -1
(iv) sin
2
θ – cos
2
θ = 1
Solution:
sin
2
θ – cos
2
θ = 1
∴ cos
2
θ – sin
2
θ = -1
∴ cos2θ = cosπ …(1)
The general solution of cos θ = cos ∝ is
θ = 2nπ ± ∝, n ∈ Z
∴ the general solution of (1) is given by
2θ = 2nπ ± π, n ∈ Z
∴ θ = nπ ± π2, n ∈ Z
Question 5.
In ∆ABC prove that cos (A−B2)=(a+bc) sin C2
Solution:
By the sine rule,
Question 6.
With usual notations prove that sin(A−B)sin(A+B)=a2−b2c2.
Solution:
By the sine rule,
asinA = bsinB = csinC = k
∴ a = ksinA, b = ksinB, c = ksinC
Question 7.
In ∆ABC prove that (a – b)
2
2cos
2
C2 + (a + b)
2
sin
2
C2 = c
2
.
Solution:
LHS (a – b)
2
2cos
2
C2 + (a + b)
2
sin
2
C2
= (a
2
+ b
2
– 2ab) cos
2
C2 + (a
2
+ b
2
+ 2ab) sinC2
2
= (a
2
+ b
2
) cos
2
C2 – 2ab cos
2
C2 + (a
2
+ b
2
) sin
2
C2 + 2ab sin
2
C2
= (a
2
+ b
2
) (cos
2
C2 + sin
2
C2) – 2ab(cos
2
C2 – sin
2
C2)
= a
2
+ b
2
– 2ab cos C
= c
2
= RHS.
Question 8.
In ∆ABC if cosA = sin B – cos C then show that it is a right angled triangle.
Solution:
cos A= sin B – cos C
∴ cos A + cos C = sin B
∴ A – C = B
∴ A = B + C
∴ A + B + C = 180° gives
A + A = 180°
∴ 2A = 180 ∴ A = 90°
∴ ∆ ABC is a rightangled triangle.
Question 9.
If sinAsinC=sin(A−B)sin(B−C) then show that a
2
, b
2
, c
2
, are in A.P.
Solution:
By sine rule,
sinAa = sinBb = sinCc = k
∴ sin A = ka, sin B = kb,sin C = kc
Now, sinAsinC=sin(A−B)sin(B−C)
∴ sinA∙sin(B – C) = sinC∙sin(A -B)
∴ sin [π – (B + C)] ∙ sin (B – C)
= sin [π – (A + B)]∙sin (A – B) … [∵ A + B + C = π]
∴ sin(B + C) ∙ sin(B – C) = sin (A + B) ∙ sin (A – B)
∴ sin
2
B – sin
2
C = sin
2
A – sin
2
B
∴ 2 sin
2
B = sin
2
A + sin
2
C
∴ 2k
2
b
2
= k
2
a
2
+ k
2
c
2
∴ 2b
2
= a
2
+ c
2
Hence, a
2
, b
2
, c
2
are in A.P.
Question 10.
Solve the triangle in which a = (√3 + 1), b = (√3 – 1) and ∠C = 60°.
Solution:
Given : a = √3 + 1, b = √3 – 1 and ∠C = 60°.
By cosine rule,
c
2
= a
2
+ b
2
– 2ab cos C
= (√3 + 1)
2
+ (√3 – 1)
2
– 2(√3 + 1)(√3 – 1)cos60°
= 3 + 1 + 2√3 + 3+ 1 – 2√3 – 2(3 – 1)(12)
= 8 – 2 = 6
∴ c = √6 …[∵ c > 0)
By sine rule,
∴ sin A = sin 60° cos 45° + cos 60° sin 45°
and sin B = sin 60° cos 45° – cos 60° sin 45°
∴ sin A = sin (60° + 45°) – sin 105°
and sin B = sin (60° – 45°) = sin 15°
∴ A = 105° and B = 15°
Hence, A = 105°, B 15° and C = √6 units.
Question 11.
In ∆ABC prove the following :
(i) a sin A – b sin B = c sin (A – B)
Solution:
By sine rule,
asinA = bsinB = csinC = k
∴ a = ksinA, b = ksinB, c = ksinC,
LHS = a sin A – b sinB
= ksinA∙sinA – ksinB∙sinB
= k (sin
2
A – sin
2
B)
= k (sin A + sin B)(sin A – sin B)
= k × sin (A + B) × sin (A – B)
= ksin(π – C)∙sin(A – B) … [∵ A + B + C = π]
= k sinC∙sin (A – B)
= c sin (A – B) = RHS.
(ii) c−bcosAb−ccosA=cosBcosC.
Solution:
(iii) a
2
sin (B – C) = (b
2
– c
2
) sinA
Solution:
By sine rule,
asinA = bsinB = csinC = k
∴ a = ksinA, b = ksinB, c = ksinC
RHS = (b
2
– c
2
) sin A
= (k
2
sin
2
B – k
2
sin
2
C)sin A
= k
2
(sin
2
B – sin
2
C) sin A
= k
2
(sin B + sin C)(sin B – sin C) sin A
= k
2
× sin (B + C) × sin (B – C) × sin A
= k
2
∙sin(π – A)∙sin(B – C)∙sinA … [∵ A + B + C = π]
= k
2
sin A∙sin (B – C)∙sin A
= (k sin A)
2
∙sin (B – C)
= a
2
sin (B – C) = LHS.
(iv) ac cos B – bc cos A = (a
2
– b
2
).
Solution:
LHS = ac cos B – bc cos A
= ac(c2+a2−b22ca) – bc(b2+c2−a22bc)
=12(c
2
+ a
2
– b
2
) – 12(b
2
+ c
2
– a
2
)
= 12(c
2
+ a
2
– b
2
– b
2
– c
2
+ a
2
)
= 12(2a
2
– 2b
2
) = a
2
– b2 = RHS.
(v) cosAa+cosBb+cosCc=a2+b2+c22abc .
Solution:
(vi) cos2 Aa2−cos2 Bb2=1a2−1b2.
Solution:
By sine rule,
sinAa=sinBb
(vii) b−ca=tanB2−tanC2tanB2+tanC2
Solution:
By sine rule,
Question 12.
In ∆ABC if a
2
, b
2
, c
2
, are in A.P. then cotA2, cotB2, cotC2 are also in A.P.
Question is modified
In ∆ABC if a, b, c, are in A.P. then cotA2, cotB2, cotC2 are also in A.P.
Solution:
a, b, c, are in A.P.
∴ 2b = a + c …(1)
Question 13.
In ∆ABC if ∠C = 90º then prove that sin(A – B) = a2−b2a2+b2
Solution:
In ∆ABC, if ∠C = 90º
∴ c
2
= a
2
+ b
2
…(1)
By sine rule,
Question 14.
In ∆ABC if cosAa=cosBb, then show that it is an isosceles triangle.
Solution:
Given : cosAa=cosBb ….(1)
By sine rule,
∴ sin A cos B = cos A sinB
∴ sinA cosB – cosA sinB = 0
∴ sin (A – B) = 0 = sin0
∴ A – B = 0 ∴ A = B
∴ the triangle is an isosceles triangle.
Question 15.
In ∆ABC if sin
2
A + sin
2
B = sin
2
C then prove that the triangle is a right angled triangle.
Question is modified
In ∆ABC if sin
2
A + sin
2
B = sin
2
C then show that the triangle is a right angled triangle.
Solution:
By sine rule,
sinAa = sinBb = sinCc = k
∴ sin A = ka, sinB = kb, sin C = kc
∴ sin
2
A + sin
2
B = sin
2
C
∴ k
2
a
2
+ k
2
b
2
= k
2
c
2
∴ a
2
+ b
2
= c
2
∴ ∆ABC is a rightangled triangle, rightangled at C.
Question 16.
In ∆ABC prove that a
2
(cos
2
B – cos
2
C) + b
2
(cos
2
C – cos
2
A) + c
2
(cos
2
A – cos
2
B) = 0.
Solution:
By sine rule,
asinA = bsinB = csinC = k
LHS = a
2
(cos
2
B – cos
2
C) + b
2
( cos
2
C – cos
2
A) + c
2
(cos
2
A – cos
2
B)
= k
2
sin
2
A [(1 – sin
2
B) – (1 – sin
2
C)] + k
2
sin
2
B [(1 – sin
2
C) – (1 – sin
2
A)] + k
2
sin
2
C[(1 – sin
2
A) – (1 – sin
2
B)]
= k
2
sin
2
A (sin
2
C – sin
2
B) + k
2
sin
2
B(sin
2
A – sin
2
C) + k
2
sin
2
C (sin
2
B – sin
2
A)
= k
2
(sin
2
A sin
2
C – sin
2
Asin
2
B + sin
2
A sin
2
B – sin
2
B sin
2
C + sin
2
B sin
2
C – sin
2
A sin
2
C)
= k
2
(0) = 0 = RHS.
Question 17.
With usual notations show that (c
2
– a
2
+ b
2
) tan A = (a
2
– b
2
+ c
2
) tan B = (b
2
– c
2
+ a
2
) tan C.
Solution:
By sine rule,
asinA = bsinB = csinC = k
∴ a = fksinA, b = ksinB, c = ksinC
From (1), (2) and (3), we get
(c
2
– a
2
+ b
2
) tan A = (a
2
– b
2
+ c
2
) tan B
= (b
2
– c
2
+ a
2
) tan C.
Question 18.
In ∆ABC, if a cos
2
C2 + c cos
2
A2 = 3b2, then prove that a , b ,c are in A.P.
Solution:
a cos
2
C2 + c cos
2
A2 = 3b2
∴ a + c + b = 3b …[∵ a cos C + c cos A = b]
∴ a + c = 2b
Hence, a, b, c are in A.P.
Question 19.
Show that 2 sin
-1
(35) = tan
-1
(247).
Solution:
Let sin
2
(35) = x.
∴ tan
-1
(247) = RHS
Question 20.
Show that tan
-1
(15) + tan
-1
(17) + tan
-1
(13) + tan
-1
(18) = π4.
Solution:
Question 21.
Prove that tan
-1
√x = 12 cos
-1
(1−x1+x), if x ∈ [0, 1].
Solution:
Let tan
-1
√x = y
∴ tan y = √x ∴ x = tan
2
y
Question 22.
Show that 9π8−94 sin
-1
13 = 94 sin
-1
2√23.
Question is modified
Show that 9π8−94 sin
-1
(13) = 94 sin
-1
(2√23).
Solution:
We have to show that
Question 23.
Show that
Solution:
Question 24.
If sin(sin
-1
15 + cos
-1
x) = 1, then find the value of x.
Solution:
sin(sin
-1
15 = 1
Question 25.
If tan
-1
(x−1x−2) + tan
-1
(x+1x+2) = π4 then find the value of x.
Solution:
tan
-1
(x−1x−2) + tan
-1
(x+1x+2) = π4
∴ x = ±1√2.
Question 26.
If 2 tan
-1
(cos x ) = tan
-1
(cosec x) then find the value of x.
Solution:
2 tan
-1
(cos x ) = tan
-1
(cosec x)
Question 27.
Solve: tan
-1
(1−x1+x) = 12(tan
-1
x), for x > 0.
Solution:
tan
-1
(1−x1+x) = 12(tan
-1
x)
Question 28.
If sin
-1
(1 – x) – 2sin
-1
x = π2, then find the value of x.
Solution:
sin
-1
(1 – x) – 2sin
-1
x = π2
Question 29.
If tan
-1
2x + tan
-1
3x = π4, then find the value of x.
Question is modified
If tan
-1
2x + tan
-1
3x = π2, then find the value of x.
Solution:
tan
-1
2x + tan
-1
3x = π4
∴ tan
-1
(2x+3x1−2x×3x) = tanπ4, where 2x > 0, 3x > 0
∴ 5x1−6x2 = tanπ4 = 1
∴ 5x = 1 – 6x
2
∴ 6x
2
+ 5x – 1 = 0
∴ 6x
2
+ 6x – x – 1 = 0
∴ 6x(x +1) – 1(x + 1) = 0
∴ (x + 1)(6x – 1) = 0
∴ x = -1 or x = 16
But x > 0 ∴ x ≠ -1
Hence, x = 16
Question 30.
Show that tan
-1
12 – tan
-1
14 = tan
-1
29.
Solution:
LHS = tan
-1
12 – tan
-1
14
Question 31.
Show that cot
-1
13 – tan
-1
13 = cot
-1
34.
Solution:
LHS = cot
-1
13 – tan
-1
13
Question 32.
Show that tan
-1
12 = 13 tan
-1
112.
Solution:
We have to show that
Question 33.
Show that cos
-1
√32 + 2sin
-1
√32 = 5π6
Solution:
Question 34.
Show that 2cot
-1
32 + sec
-1
1312 = π2
Solution:
Question 35.
Prove the following :
(i) cos
-1
x = tan
-1
√1−x2x, if x < 0.
Question is modified
cos
-1
x = tan
-1
(√1−x2x), if x > 0.
Solution:
(ii) cos
-1
x = π + tan
-1
√1−x2x, if x < 0.
Solution:
Question 36.
If |x| < 1 , then prove that 2tan
-1
x = tan
-1
2x1−x2 = sin
-1
2x1+x2 = cos
-1
1−x21+x2
Question is modified
If |x| < 1 , then prove that 2tan
-1
x = tan
-1
(2x1−x2) = sin
-1
(2x1+x2) = cos
-1
(1−x21+x2)
Solution:
Let tan
-1
x = y
Then, x = tany
Question 37.
If x, y, z, are positive then prove that tan
-1
x−y1+xy + tan
-1
y−z1+yz + tan
-1
z−x1+zx = 0
Solution:
Question 38.
If tan
-1
x + tan
-1
y + tan
-1
z = π2 then, show that xy + yz + zx = 1
Solution:
tan
-1
x + tan
-1
y + tan
-1
z = π2
∴ 1 – xy – yz – zx = 0
∴ xy + yz + zx = 1.
Question 39.
If cos
-1
x + cos
-1
y + cos
-1
z = π then show that x
2
+ y
2
+ z
2
+ 2xyz = 1.
Solution:
0 ≤ cos
-1
x ≤ π and
cos
-1
x + cos
-1
y+ cos
-1
z = 3π
∴ cos
-1
x = π, cos
-1
y = π and cos
-1
z = π
∴ x = y = z = cosπ = -1
∴ x
2
+ y
2
+ z
2
+ 2xyz
= (-1)
2
+ (-1)
2
+ (-1)
2
+ 2(-1)(-1)(-1)
= 1 + 1 + 1 – 2
= 3 – 2 = 1.