Loading [MathJax]/jax/output/CommonHTML/jax.js

Trigonometric Functions Class 12 Maths 1 Miscellaneous Exercise 3 Solutions Maharashtra Board

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 Questions and Answers.

12th Maths Part 1 Trigonometric Functions Miscellaneous Exercise 3 Questions And Answers Maharashtra Board

I) Select the correct option from the given alternatives.
Question 1.
The principal of solutions equation sinθ = 12 are ________.
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-1
Solution:
(b) 7π6,11π6

Question 2.
The principal solution of equation cot θ = 3 ___________.
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-2
Solution:
(a) π6,7π6

Question 3.
The general solution of sec x = 2 is __________.
(a) 2nπ ± π4, n ∈ Z
(b) 2nπ ± π2, n ∈ Z
(c) nπ ± π2, n ∈ Z
(d) 2nπ ± π3, n ∈ Z
Solution:
(a) 2nπ ± π4, n ∈ Z

Question 4.
If cos pθ = cosqθ, p ≠ q rhen ________.
(a) θ = 2nπp±q
(b) θ = 2nπ
(c) θ = 2nπ ± p
(d) nπ ± q
Solution:
(a) θ = 2nπp±q

Maharashtra-Board-Solutions

Question 5.
If polar co-ordinates of a point are (2,π4) then its cartesian co-ordinates are ______.
(a) (2, 2 )
(b) (2, 2)
(c) (2, 2)
(d) (2 , 2)
Solution:
(d) (2 , 2)

Question 6.
If 3 cosx – sin x = 1, then general value of x is _________.
(a) 2nπ ± π3
(b) 2nπ ± π6
(c) 2nπ ± π3π6
(d) nπ + (-1) n π3
Solution:
(c) 2nπ ± π3π6

Question 7.
In ∆ABC if ∠A = 45°, ∠B = 60° then the ratio of its sides are _________.
(a) 2 : π2 : π3 + 1
(b) π2 : 2 : π3 + 1
(c) 2 π2 : π2 : π3
(d) 2 : 2 π2 : π3 + 1
Solution:
(a) 2 : π2 : π3 + 1

Maharashtra-Board-Solutions

Question 8.
In ∆ABC, if c 2 + a 2 – b 2 = ac, then ∠B = __________.
(a) π4
(b) π3
(c) π2
(d) π6
Solution:
(b) π3

Question 9.
In ABC, ac cos B – bc cos A = ____________.
(a) a 2 – b 2
(b) b 2 – c 2
(c) c 2 – a 2
(d) a 2 – b 2 – c 2
Solution:
(a) a 2 – b 2

Question 10.
If in a triangle, the are in A.P. and b : c = 3 : 2 then A is equal to __________.
(a) 30°
(b) 60°
(c) 75°
(d) 45°
Solution:
(c) 75°

Maharashtra-Board-Solutions

Question 11.
cos -1 (cos7π6) = ________.
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-3

Question 12.
The value of cot (tan -1 2x + cot -1 2x) is __________.
(a) 0
(b) 2x
(c) π + 2x
(d) π – 2x
Solution:
(a) 0

Question 13.
The principal value of sin -1 (32) is ____________.
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-4
Solution:
(d) π3

Maharashtra-Board-Solutions

Question 14.
If sin -1 45 + cos -1 ,1213 = sin -1 ∝, then ∝ = _____________.
(a) 6365
(b) 6265
(c) 6165
(d) 6065
Solution:
(a) 6365

Question 15.
If tan -1 (2x) + tan -1 (3x) = π4, then x = ________.
(a) -1
(b) 16
(c) 26
(d) 32
Solution:
(b) 16

Question 16.
2 tan -1 13 + tan -1 17 = ______.
(a) tan -1 45
(b) π2
(c) 1
(d) π4
Solution:
(d) π4

Maharashtra-Board-Solutions

Question 17.
tan (2 tan -1 (15)π4) = ______.
(a) 177
(b) 177
(c) 717
(d) 717
Solution:
(d) 717
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-5

Question 18.
The principal value branch of sec -1 x is __________.
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-6
Solution:
(b) [0, π] – {π2}

Question 19.
cos[tan -1 13 + tan -1 12] = ________.
(a) 12
(b) 32
(c) 12
(d) π4
Solution:
(a) 12

Maharashtra-Board-Solutions

Question 20.
If tan θ + tan 2θ + tan 3θ = tan θ∙tan 2θ∙tan 3θ, then the general value of the θ is _______.
(a) nπ
(b) nπ6
(c) nπ ± nπ4
(d) nπ2
Solution:
(b) nπ6
[Hint: tan(A + B + C) = tanA+tanB+tanCtanAtanBtanC1tanAtanBtanBtanCtanCtanA
Since , tan θ + tan 2θ + tan 3θ = tan θ ∙ tan 2θ ∙ tan 3θ,
we get, tan (θ + 2θ + 3θ) = θ
∴ tan6θ = 0
∴ 6θ = nπ, θ = nπ6.]

Question 21.
If any ∆ABC, if a cos B = b cos A, then the triangle is ________.
(a) Equilateral triangle
(b) Isosceles triangle
(c) Scalene
(d) Right angled
Solution:
(b) Isosceles triangle

II: Solve the following
Question 1.
Find the principal solutions of the following equations :
(i) sin2θ = 12
Solution:
sin2θ = 12
Since, θ ∈ (0, 2π), 2∈ ∈ (0, 4π)
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-7

(ii) tan3θ = -1
Solution:
Since, θ ∈ (0, 2π), 3∈ ∈ (0, 6π)
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-8
… [∵ tan(π – θ) = tan(2π – θ) = tan(3π – θ)
= tan (4π – θ) = tan (5π – θ) = tan (6π – θ) = -tan θ]
∴ tan3θ = tan3π4 = tan7π4 = tan11π4 = tan15π4
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-9

(iii) cotθ = 0
Solution:
cotθ = 0
Since θ ∈ (0, 2π),
cotθ = 0 = cot π2 = cot (π + π2 …[∵ cos(π + θ) = cotθ]
∴ cotθ = cotπ2 = cot3π2
∴ θ = π2 or θ = 3π2
Hence, the required principal solutions are {π2,3π2}

Maharashtra-Board-Solutions

Question 2.
Find the principal solutions of the following equations :
(i) sin2θ = 12
Solution:

(ii) tan5θ = -1
Solution:

(iii) cot2θ = 0
Solution:

Question 3.
Which of the following equations have no solutions ?
(i) cos 2θ = 13
Solution:
cos 2θ = 13
Since 13 ≤ cosθ ≤ 1 for any θ
cos2θ = 13 has solution

(ii) cos 2 θ = -1
Solution:
cos2θ = -1
This is not possible because cos2θ ≥ 0 for any θ.
∴ cos2θ = -1 does not have any solution.

(iii) 2 sinθ = 3
Solution:
2 sin θ = 3 ∴ sin θ = 32
This is not possible because -1 ≤ sin θ ≤ 1 for any θ.
∴ 2 sin θ = 3 does not have any solution.

(iv) 3 sin θ = 5
Solution:
3 sin θ = 5
∴ sin θ = 53
This is not possible because -1 ≤ sin θ ≤ 1 for any θ.
∴ 3 sin θ = 5 does not have any solution.

Question 4.
Find the general solutions of the following equations :
(i) tanθ = x
Solution:
The general solution of tan θ = tan ∝ is
θ = nπ + ∝, n ∈ Z.
Now, tanθ = x
∴ tanθ = tanπ3 …[∵ tanπ3 = 3]
∴ tanθ = tan(ππ3) …[∵ tan(π – θ) = -tanθ]
∴ tanθ = tan2π3
∴ the required general solution is
θ = nπ + 2π3, n ∈ Z.

(ii) tan 2 θ = 3
Solution:
The general solution of tan 2 θ = tan 2 ∝ is
θ = nπ ± ∝, n ∈ Z.
Now, tan 2 θ = 3 = (x) 2
∴ tan 2 θ = (tanπ3) 2 …[∵ tanπ3 = 3]
∴ tan 2 θ = tan 2 π3
∴ the required general solution is
θ = nπ ± π3, n ∈ Z.

(iii) sin θ – cosθ = 1
Solution:
∴ cosθ – sin θ = -1
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-72
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-73

(iv) sin 2 θ – cos 2 θ = 1
Solution:
sin 2 θ – cos 2 θ = 1
∴ cos 2 θ – sin 2 θ = -1
∴ cos2θ = cosπ …(1)
The general solution of cos θ = cos ∝ is
θ = 2nπ ± ∝, n ∈ Z
∴ the general solution of (1) is given by
2θ = 2nπ ± π, n ∈ Z
∴ θ = nπ ± π2, n ∈ Z

Maharashtra-Board-Solutions

Question 5.
In ∆ABC prove that cos (AB2)=(a+bc) sin C2
Solution:
By the sine rule,
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-12
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-17

Question 6.
With usual notations prove that sin(AB)sin(A+B)=a2b2c2.
Solution:
By the sine rule,
asinA = bsinB = csinC = k
∴ a = ksinA, b = ksinB, c = ksinC
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-14

Question 7.
In ∆ABC prove that (a – b) 2 2cos 2 C2 + (a + b) 2 sin 2 C2 = c 2 .
Solution:
LHS (a – b) 2 2cos 2 C2 + (a + b) 2 sin 2 C2
= (a 2 + b 2 – 2ab) cos 2 C2 + (a 2 + b 2 + 2ab) sinC2 2
= (a 2 + b 2 ) cos 2 C2 – 2ab cos 2 C2 + (a 2 + b 2 ) sin 2 C2 + 2ab sin 2 C2
= (a 2 + b 2 ) (cos 2 C2 + sin 2 C2) – 2ab(cos 2 C2 – sin 2 C2)
= a 2 + b 2 – 2ab cos C
= c 2 = RHS.

Maharashtra-Board-Solutions

Question 8.
In ∆ABC if cosA = sin B – cos C then show that it is a right angled triangle.
Solution:
cos A= sin B – cos C
∴ cos A + cos C = sin B
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-15
∴ A – C = B
∴ A = B + C
∴ A + B + C = 180° gives
A + A = 180°
∴ 2A = 180 ∴ A = 90°
∴ ∆ ABC is a rightangled triangle.

Question 9.
If sinAsinC=sin(AB)sin(BC) then show that a 2 , b 2 , c 2 , are in A.P.
Solution:
By sine rule,
sinAa = sinBb = sinCc = k
∴ sin A = ka, sin B = kb,sin C = kc
Now, sinAsinC=sin(AB)sin(BC)
∴ sinA∙sin(B – C) = sinC∙sin(A -B)
∴ sin [π – (B + C)] ∙ sin (B – C)
= sin [π – (A + B)]∙sin (A – B) … [∵ A + B + C = π]
∴ sin(B + C) ∙ sin(B – C) = sin (A + B) ∙ sin (A – B)
∴ sin 2 B – sin 2 C = sin 2 A – sin 2 B
∴ 2 sin 2 B = sin 2 A + sin 2 C
∴ 2k 2 b 2 = k 2 a 2 + k 2 c 2
∴ 2b 2 = a 2 + c 2
Hence, a 2 , b 2 , c 2 are in A.P.

Question 10.
Solve the triangle in which a = (3 + 1), b = (3 – 1) and ∠C = 60°.
Solution:
Given : a = 3 + 1, b = 3 – 1 and ∠C = 60°.
By cosine rule,
c 2 = a 2 + b 2 – 2ab cos C
= (3 + 1) 2 + (3 – 1) 2 – 2(3 + 1)(3 – 1)cos60°
= 3 + 1 + 23 + 3+ 1 – 23 – 2(3 – 1)(12)
= 8 – 2 = 6
∴ c = 6 …[∵ c > 0)
By sine rule,
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-16
∴ sin A = sin 60° cos 45° + cos 60° sin 45°
and sin B = sin 60° cos 45° – cos 60° sin 45°
∴ sin A = sin (60° + 45°) – sin 105°
and sin B = sin (60° – 45°) = sin 15°
∴ A = 105° and B = 15°
Hence, A = 105°, B 15° and C = 6 units.

Question 11.
In ∆ABC prove the following :
(i) a sin A – b sin B = c sin (A – B)
Solution:
By sine rule,
asinA = bsinB = csinC = k
∴ a = ksinA, b = ksinB, c = ksinC,
LHS = a sin A – b sinB
= ksinA∙sinA – ksinB∙sinB
= k (sin 2 A – sin 2 B)
= k (sin A + sin B)(sin A – sin B)
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-17
= k × sin (A + B) × sin (A – B)
= ksin(π – C)∙sin(A – B) … [∵ A + B + C = π]
= k sinC∙sin (A – B)
= c sin (A – B) = RHS.

(ii) cbcosAbccosA=cosBcosC.
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-18

(iii) a 2 sin (B – C) = (b 2 – c 2 ) sinA
Solution:
By sine rule,
asinA = bsinB = csinC = k
∴ a = ksinA, b = ksinB, c = ksinC
RHS = (b 2 – c 2 ) sin A
= (k 2 sin 2 B – k 2 sin 2 C)sin A
= k 2 (sin 2 B – sin 2 C) sin A
= k 2 (sin B + sin C)(sin B – sin C) sin A
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-19
= k 2 × sin (B + C) × sin (B – C) × sin A
= k 2 ∙sin(π – A)∙sin(B – C)∙sinA … [∵ A + B + C = π]
= k 2 sin A∙sin (B – C)∙sin A
= (k sin A) 2 ∙sin (B – C)
= a 2 sin (B – C) = LHS.

(iv) ac cos B – bc cos A = (a 2 – b 2 ).
Solution:
LHS = ac cos B – bc cos A
= ac(c2+a2b22ca) – bc(b2+c2a22bc)
=12(c 2 + a 2 – b 2 ) – 12(b 2 + c 2 – a 2 )
= 12(c 2 + a 2 – b 2 – b 2 – c 2 + a 2 )
= 12(2a 2 – 2b 2 ) = a 2 – b2 = RHS.

Maharashtra-Board-Solutions

(v) cosAa+cosBb+cosCc=a2+b2+c22abc .
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-20
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-21

(vi) cos2 Aa2cos2 Bb2=1a21b2.
Solution:
By sine rule,
sinAa=sinBb
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-22

(vii) bca=tanB2tanC2tanB2+tanC2
Solution:
By sine rule,
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-23
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-24
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-25
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-26
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-27

Question 12.
In ∆ABC if a 2 , b 2 , c 2 , are in A.P. then cotA2, cotB2, cotC2 are also in A.P.
Question is modified
In ∆ABC if a, b, c, are in A.P. then cotA2, cotB2, cotC2 are also in A.P.
Solution:
a, b, c, are in A.P.
∴ 2b = a + c …(1)
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-28
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-29
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-30
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-31

Question 13.
In ∆ABC if ∠C = 90º then prove that sin(A – B) = a2b2a2+b2
Solution:
In ∆ABC, if ∠C = 90º
∴ c 2 = a 2 + b 2 …(1)
By sine rule,
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-32
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-33

Question 14.
In ∆ABC if cosAa=cosBb, then show that it is an isosceles triangle.
Solution:
Given : cosAa=cosBb ….(1)
By sine rule,
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-34
∴ sin A cos B = cos A sinB
∴ sinA cosB – cosA sinB = 0
∴ sin (A – B) = 0 = sin0
∴ A – B = 0 ∴ A = B
∴ the triangle is an isosceles triangle.

Question 15.
In ∆ABC if sin 2 A + sin 2 B = sin 2 C then prove that the triangle is a right angled triangle.
Question is modified
In ∆ABC if sin 2 A + sin 2 B = sin 2 C then show that the triangle is a right angled triangle.
Solution:
By sine rule,
sinAa = sinBb = sinCc = k
∴ sin A = ka, sinB = kb, sin C = kc
∴ sin 2 A + sin 2 B = sin 2 C
∴ k 2 a 2 + k 2 b 2 = k 2 c 2
∴ a 2 + b 2 = c 2
∴ ∆ABC is a rightangled triangle, rightangled at C.

Maharashtra-Board-Solutions

Question 16.
In ∆ABC prove that a 2 (cos 2 B – cos 2 C) + b 2 (cos 2 C – cos 2 A) + c 2 (cos 2 A – cos 2 B) = 0.
Solution:
By sine rule,
asinA = bsinB = csinC = k
LHS = a 2 (cos 2 B – cos 2 C) + b 2 ( cos 2 C – cos 2 A) + c 2 (cos 2 A – cos 2 B)
= k 2 sin 2 A [(1 – sin 2 B) – (1 – sin 2 C)] + k 2 sin 2 B [(1 – sin 2 C) – (1 – sin 2 A)] + k 2 sin 2 C[(1 – sin 2 A) – (1 – sin 2 B)]
= k 2 sin 2 A (sin 2 C – sin 2 B) + k 2 sin 2 B(sin 2 A – sin 2 C) + k 2 sin 2 C (sin 2 B – sin 2 A)
= k 2 (sin 2 A sin 2 C – sin 2 Asin 2 B + sin 2 A sin 2 B – sin 2 B sin 2 C + sin 2 B sin 2 C – sin 2 A sin 2 C)
= k 2 (0) = 0 = RHS.

Question 17.
With usual notations show that (c 2 – a 2 + b 2 ) tan A = (a 2 – b 2 + c 2 ) tan B = (b 2 – c 2 + a 2 ) tan C.
Solution:
By sine rule,
asinA = bsinB = csinC = k
∴ a = fksinA, b = ksinB, c = ksinC
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-35
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-36
From (1), (2) and (3), we get
(c 2 – a 2 + b 2 ) tan A = (a 2 – b 2 + c 2 ) tan B
= (b 2 – c 2 + a 2 ) tan C.

Question 18.
In ∆ABC, if a cos 2 C2 + c cos 2 A2 = 3b2, then prove that a , b ,c are in A.P.
Solution:
a cos 2 C2 + c cos 2 A2 = 3b2
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-37
∴ a + c + b = 3b …[∵ a cos C + c cos A = b]
∴ a + c = 2b
Hence, a, b, c are in A.P.

Maharashtra-Board-Solutions

Question 19.
Show that 2 sin -1 (35) = tan -1 (247).
Solution:
Let sin 2 (35) = x.
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-38
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-39
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-40
∴ tan -1 (247) = RHS

Question 20.
Show that tan -1 (15) + tan -1 (17) + tan -1 (13) + tan -1 (18) = π4.
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-41
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-42

Question 21.
Prove that tan -1 x = 12 cos -1 (1x1+x), if x ∈ [0, 1].
Solution:
Let tan -1 x = y
∴ tan y = x ∴ x = tan 2 y
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-43

Question 22.
Show that 9π894 sin -1 13 = 94 sin -1 223.
Question is modified
Show that 9π894 sin -1 (13) = 94 sin -1 (223).
Solution:
We have to show that
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-44
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-45

Maharashtra-Board-Solutions

Question 23.
Show that
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-46
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-47
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-48
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-49

Question 24.
If sin(sin -1 15 + cos -1 x) = 1, then find the value of x.
Solution:
sin(sin -1 15 = 1
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-50

Question 25.
If tan -1 (x1x2) + tan -1 (x+1x+2) = π4 then find the value of x.
Solution:
tan -1 (x1x2) + tan -1 (x+1x+2) = π4
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-51
∴ x = ±12.

Question 26.
If 2 tan -1 (cos x ) = tan -1 (cosec x) then find the value of x.
Solution:
2 tan -1 (cos x ) = tan -1 (cosec x)
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-52

Maharashtra-Board-Solutions

Question 27.
Solve: tan -1 (1x1+x) = 12(tan -1 x), for x > 0.
Solution:
tan -1 (1x1+x) = 12(tan -1 x)
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-53
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-54

Question 28.
If sin -1 (1 – x) – 2sin -1 x = π2, then find the value of x.
Solution:
sin -1 (1 – x) – 2sin -1 x = π2
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-55
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-56

Question 29.
If tan -1 2x + tan -1 3x = π4, then find the value of x.
Question is modified
If tan -1 2x + tan -1 3x = π2, then find the value of x.
Solution:
tan -1 2x + tan -1 3x = π4
∴ tan -1 (2x+3x12x×3x) = tanπ4, where 2x > 0, 3x > 0
5x16x2 = tanπ4 = 1
∴ 5x = 1 – 6x 2
∴ 6x 2 + 5x – 1 = 0
∴ 6x 2 + 6x – x – 1 = 0
∴ 6x(x +1) – 1(x + 1) = 0
∴ (x + 1)(6x – 1) = 0
∴ x = -1 or x = 16
But x > 0 ∴ x ≠ -1
Hence, x = 16

Question 30.
Show that tan -1 12 – tan -1 14 = tan -1 29.
Solution:
LHS = tan -1 12 – tan -1 14
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-57

Maharashtra-Board-Solutions

Question 31.
Show that cot -1 13 – tan -1 13 = cot -1 34.
Solution:
LHS = cot -1 13 – tan -1 13
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-58

Question 32.
Show that tan -1 12 = 13 tan -1 112.
Solution:
We have to show that
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-59
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-60

Maharashtra-Board-Solutions

Question 33.
Show that cos -1 32 + 2sin -1 32 = 5π6
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-61

Question 34.
Show that 2cot -1 32 + sec -1 1312 = π2
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-62
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-63
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-64

Question 35.
Prove the following :
(i) cos -1 x = tan -1 1x2x, if x < 0.
Question is modified
cos -1 x = tan -1 (1x2x), if x > 0.
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-65

(ii) cos -1 x = π + tan -1 1x2x, if x < 0.
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-66
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-67

Maharashtra-Board-Solutions

Question 36.
If |x| < 1 , then prove that 2tan -1 x = tan -1 2x1x2 = sin -1 2x1+x2 = cos -1 1x21+x2
Question is modified
If |x| < 1 , then prove that 2tan -1 x = tan -1 (2x1x2) = sin -1 (2x1+x2) = cos -1 (1x21+x2)
Solution:
Let tan -1 x = y
Then, x = tany
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-68
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-69

Question 37.
If x, y, z, are positive then prove that tan -1 xy1+xy + tan -1 yz1+yz + tan -1 zx1+zx = 0
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-70

Question 38.
If tan -1 x + tan -1 y + tan -1 z = π2 then, show that xy + yz + zx = 1
Solution:
tan -1 x + tan -1 y + tan -1 z = π2
Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-71
∴ 1 – xy – yz – zx = 0
∴ xy + yz + zx = 1.

Maharashtra-Board-Solutions

Question 39.
If cos -1 x + cos -1 y + cos -1 z = π then show that x 2 + y 2 + z 2 + 2xyz = 1.
Solution:
0 ≤ cos -1 x ≤ π and
cos -1 x + cos -1 y+ cos -1 z = 3π
∴ cos -1 x = π, cos -1 y = π and cos -1 z = π
∴ x = y = z = cosπ = -1
∴ x 2 + y 2 + z 2 + 2xyz
= (-1) 2 + (-1) 2 + (-1) 2 + 2(-1)(-1)(-1)
= 1 + 1 + 1 – 2
= 3 – 2 = 1.

Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-72

Maharashtra-Board-12th-Maths-Solutions-Chapter-3-Trigonometric-Functions-Miscellaneous-Exercise-3-73