Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 6.1 Geometry 10th Class Maths Part 2 Answers Solutions Chapter 6 Trigonometry.
10th Standard Maths 2 Practice Set 6.1 Chapter 6 Trigonometry Textbook Answers Maharashtra Board
Class 10 Maths Part 2 Practice Set 6.1 Chapter 6 Trigonometry Questions With Answers Maharashtra Board
   Question 1.
   
   If sin θ = \(\frac { 7 }{ 25 } \), find the values of cos θ and tan θ.
   
   Solution:
   
   sin θ = \(\frac { 7 }{ 25 } \) … [Given]
   
   We know that,
   
   sin
   
    2
   
   θ + cos
   
    2
   
   θ = 1
   
    
   
   …[Taking square root of both sides] Now, tan θ = \(\frac{\sin \theta}{\cos \theta}\)
   
    
   
   Alternate Method:
   
   sin θ = \(\frac { 7 }{ 25 } \) …(i) [Given]
   
   Consider ∆ABC, where ∠ABC 90° and ∠ACB = θ.
   
   sin θ = \(\frac { AB }{ AC } \) … (ii) [By definition]
   
   ∴ \(\frac { AB }{ AC } \) = \(\frac { 7 }{ 25 } \) … [From (i) and (ii)]
   
    
   
   LetAB = 7k and AC = 25k
   
   In ∆ABC, ∠B = 90°
   
   ∴ AB
   
    2
   
   + BC
   
    2
   
   = AC
   
    2
   
   … [Pythagoras theorem]
   
   ∴ (7k)
   
    2
   
   + BC
   
    2
   
   = (25k)
   
    2
   
   
   ∴ 49k
   
    2
   
   + BC
   
    2
   
   = 625k
   
    2
   
   
   ∴ BC
   
    2
   
   = 625k
   
    2
   
   – 49k
   
    2
   
   
   ∴ BC
   
    2
   
   = 576k
   
    2
   
   
   ∴ BC = 24k …[Taking square root of both sides]
   
    
  
   Question 2.
   
   If tan θ = \(\frac { 3 }{ 4 } \), find the values of sec θ and cos θ.
   
   Solution:
   
    
   
   Alternate Method:
   
   tan θ = \(\frac { 3 }{ 4 } \) …(i)[Given]
   
   Consider ∆ABC, where ∠ABC 90° and ∠ACB = θ.
   
   tan θ = \(\frac { AB }{ BC } \) … (ii) [By definition]
   
   ∴ \(\frac { AB }{ BC } \) = \(\frac { 3 }{ 4 } \) … [From (i) and (ii)]
   
    
   
   Let AB = 3k and BC 4k
   
   In ∆ABC,∠B = 90°
   
   ∴ AB
   
    2
   
   + BC
   
    2
   
   = AC
   
    2
   
   …[Pythagoras theorem]
   
   ∴ (3k)
   
    2
   
   + (4k)
   
    2
   
   = AC
   
    2
   
   
   ∴ 9k
   
    2
   
   + 16k
   
    2
   
   = AC
   
    2
   
   
   ∴ AC
   
    2
   
   = 25k
   
    2
   
   
   ∴ AC = 5k …[Taking square root of both sides]
   
    
  
   Question 3.
   
   If cot θ = \(\frac { 40 }{ 9 } \), find the values of cosec θ and sin θ
   
   Solution:
   
    
   
   ..[Taking square root of both sides]
   
    
   
   Alternate Method:
   
   cot θ = \(\frac { 40 }{ 9 } \) ….(i) [Given]
   
   Consider ∆ABC, where ∠ABC = 90° and
   
   ∠ACB = θ
   
   cot θ = \(\frac { BC }{ AB } \) …(ii) [By defnition]
   
   ∴ \(\frac { BC }{ AB } \) = \(\frac { 40 }{ 9 } \) ….. [From (i) and (ii)]
   
   Let BC = 40k and AB = 9k
   
    
   
   In ∆ABC, ∠B = 90°
   
   ∴ AB
   
    2
   
   + BC
   
    2
   
   = AC
   
    2
   
   … [Pythagoras theorem]
   
   ∴ (9k)
   
    2
   
   + (40k)
   
    2
   
   = AC
   
    2
   
   
   ∴ 81k
   
    2
   
   + 1600k
   
    2
   
   = AC
   
    2
   
   
   ∴ AC
   
    2
   
   = 1681k
   
    2
   
   
   ∴ AC = 41k … [Taking square root of both sides]
   
    
  
   Question 4.
   
   If 5 sec θ – 12 cosec θ = θ, find the values of sec θ, cos θ and sin θ.
   
   Solution:
   
   5 sec θ – 12 cosec θ = 0 …[Given]
   
   ∴ 5 sec θ = 12 cosec θ
   
    
   
    
  
   Question 5.
   
   If tan θ = 1, then find the value of
   
    
   
   Solution:
   
   tan θ = 1 … [Given]
   
   We know that, tan 45° = 1
   
   ∴ tan θ = tan 45°
   
   ∴ θ = 45°
   
    
  
   Question 6.
   
   Prove that:
   
   i. \(\frac{\sin ^{2} \theta}{\cos \theta}+\cos \theta=\sec \theta\)
   
   ii. cos
   
    2
   
   θ (1+ tan
   
    2
   
   θ) = 1
   
   iii. \(\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\sec \theta-\tan \theta\)
   
   iv. (sec θ – cos θ) (cot θ + tan θ) tan θ. sec θ
   
   v. cot θ + tan θ cosec θ. sec θ
   
   vi. \(\frac{1}{\sec \theta-\tan \theta}=\sec \theta+\tan \theta\)
   
   vii. sin
   
    4
   
   θ – cos
   
    4
   
   θ = 1 – 2 cos
   
    2
   
   θ
   
   viii. \(\sec \theta+\tan \theta=\frac{\cos \theta}{1-\sin \theta}\)
   
    
   
   Proof:
   
   i. L.H.S. = \(\frac{\sin ^{2} \theta}{\cos \theta}+\cos \theta\)
   
    
  
   ii. L.H.S. = cos
   
    2
   
   θ(1 + tan
   
    2
   
   θ)
   
   = cos
   
    2
   
   θ sec
   
    2
   
   θ …[∵ 1 + tan
   
    2
   
   θ = sec
   
    2
   
   θ]
   
    
   
   = 1
   
   = R.H.S.
   
   ∴ cos
   
    2
   
   θ (1 + tan
   
    2
   
   θ) = 1
  
    
  
   iv. L.H.S. = (sec θ – cos θ) (cot θ + tan θ)
   
    
   
   ∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ. sec θ
  
   v. L.H.S. = cot θ + tan θ
   
    
   
   ∴ cot θ + tan θ = cosec θ.sec θ
  
    
  
   vii. L.H.S. = sin
   
    4
   
   θ – cos
   
    4
   
   θ
   
   = (sin
   
    2
   
   θ)
   
    2
   
   – (cos
   
    2
   
   θ)
   
    2
   
   
   = (sin
   
    2
   
   θ + cos
   
    2
   
   θ) (sin
   
    2
   
   θ – cos
   
    2
   
   θ)
   
   = (1) (sin
   
    2
   
   θ – cos
   
    2
   
   θ) ….[∵ sin
   
    2
   
   θ + cos
   
    2
   
   θ = 1]
   
   = sin
   
    2
   
   θ – cos
   
    2
   
   θ
   
   = (1 – cos
   
    2
   
   θ) – cos
   
    2
   
   θ …[θ sin
   
    2
   
   θ = 1 – cos
   
    2
   
   θ]
   
   = 1 – 2 cos
   
    2
   
   θ
   
   = R.H.S.
   
   ∴ sin
   
    4
   
   θ – cos
   
    4
   
   θ = 1 – 2 cos
   
    2
   
   θ
  
   viii. L.H.S. = sec θ + tan θ
   
    
  
    
   
    
  
   xi. L.H.S. = sec
   
    4
   
   A (1 – sin
   
    4
   
   A) – 2 tan
   
    2
   
   A
   
   = sec
   
    4
   
   A [1
   
    2
   
   – (sin
   
    2
   
   A)
   
    2
   
   ] – 2 tan
   
    2
   
   A
   
   = sec
   
    4
   
   A (1 – sin
   
    2
   
   A) (1 + sin
   
    2
   
   A) – 2 tan
   
    2
   
   A
   
   = sec
   
    4
   
   A cos
   
    2
   
   A (1 + sin
   
    2
   
   A) – 2 tan
   
    2
   
   A
   
   [ ∵ sin
   
    2
   
   θ + cos
   
    2
   
   θ = 1 ,∵ 1 – sin
   
    2
   
   θ = cos
   
    2
   
   θ]
   
    
   
    
  
Maharashtra Board Class 10 Maths Chapter 6 Trigonometry Intext Questions and Activities
   Question 1.
   
   Fill in the blanks with reference to the figure given below. (Textbook pg. no. 124)
   
    
   
   Solution:
  
    
  
   Question 2.
   
   Complete the relations in ratios given below. (Textbook pg, no. 124)
   
    
   
   Solution:
   
   i. \(\frac{\sin \theta}{\cos \theta}\) = [tan θ]
   
   ii. sin θ = cos (90 – θ)
   
   iii. cos θ = (90 – θ)
   
   iv. tan θ × tan (90 – θ) = 1
  
   Question 3.
   
   Complete the equation. (Textbook pg. no, 124)
   
   sin
   
    2
   
   θ + cos
   
    2
   
   θ = [______]
   
   Solution:
   
   sin
   
    2
   
   θ + cos
   
    2
   
   θ = [1]
  
   Question 4.
   
   Write the values of the following trigonometric ratios. (Textbook pg. no. 124)
   
    
   
   Solution:
   
   