Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 3.4 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 3 Polynomials.
9th Standard Maths 1 Practice Set 3.4 Chapter 3 Polynomials Textbook Answers Maharashtra Board
Class 9 Maths Part 1 Practice Set 3.4 Chapter 3 Polynomials Questions With Answers Maharashtra Board
   Question 1.
   
   For x = 0, find the value of the polynomial x
   
    2
   
   – 5x + 5.
   
   Solution:
   
   p(x) = x
   
    2
   
   – 5x + 5
   
   Put x = 0 in the given polynomial.
   
   ∴ P(0) = (0)
   
    2
   
   – 5(0) + 5
   
   = 0 – 0 + 5
   
   ∴ p(0) = 5
  
   Question 2.
   
   If p(y) = y
   
    2
   
   – 3√2 + 1, then find p( 3√2 ).
   
   Solution:
   
   p(y) = y
   
    2
   
   – 3√2 y + 1
   
   Putp= 3√2 in the given polynomial.
   
   ∴ p( 3√2 ) = (3√2 )
   
    2
   
   – 3√2 (3√2 ) + 1
   
   = 9 x 2 – 9 x 2 + 1
   
   = 18 – 18 + 1
   
   ∴ p( 3√2 ) = 1
  
   Question 3.
   
   If p(m) = m
   
    3
   
   + 2m
   
    2
   
   – m + 10, then P(a) + p(-a) = ?
   
   Solution:
   
   p(m) = m
   
    3
   
   + 2m
   
    2
   
   – m + 10
   
   Put m = a in the given polynomial.
   
   ∴ p(a) = a
   
    3
   
   + 2a
   
    2
   
   – a + 10 …(i)
   
   Put m = -a in the given polynomial.
   
   p(-a) = (-a)
   
    3
   
   + 2(-a)
   
    2
   
   – (-a) +10
   
   ∴ p (-a) = -a
   
    3
   
   + 2a
   
    2
   
   + a + 10 …(ii)
   
   Adding (i) and (ii),
   
   p(a) + p(-a) = (a
   
    3
   
   + 2a
   
    2
   
   – a + 10) + (-a
   
    3
   
   + 2a
   
    2
   
   + a + 10)
   
   =
   
    a
    
     3
    
    – a
    
     3
    
   
   +
   
    2a
    
     2
    
    + 2a
    
     2
    
   
   –
   
    a + a
   
   +
   
    10 + 10
   
   
   ∴ p(a) + p(-a) = 4a
   
    2
   
   + 20
  
   Question 4.
   
   If p(y) = 2y
   
    3
   
   – 6y
   
    2
   
   – 5y + 7, then find p(2).
   
   Solution:
   
   p(y) = 2y
   
    3
   
   – 6y
   
    2
   
   – 5y + 7
   
   Put y = 2 in the given polynomial.
   
   ∴ p(2) = 2(2)
   
    3
   
   – 6(2)
   
    2
   
   – 5(2) + 7
   
   = 2 x 8 – 6 x 4 – 10 + 7
   
   = 16 – 24 – 10 + 7
   
   ∴ P(2) = -11