11th Commerce Maths 1 Chapter 3 Exercise 3.1 Answers Maharashtra Board

Complex Numbers Class 11 Commerce Maths 1 Chapter 3 Exercise 3.1 Answers Maharashtra Board

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 3 Complex Numbers Ex 3.1 Questions and Answers.

Std 11 Maths 1 Exercise 3.1 Solutions Commerce Maths

Question 1.
Write the conjugates of the following complex numbers:
(i) 3 + i
(ii) 3 – i
(iii) -√5 – √7i
(iv) -√-5
(v) 5i
(vi) √5 – i
(vii) √2 + √3i
Solution:
(i) Conjugate of (3 + i) is (3 – i)
(ii) Conjugate of (3 – i) is (3 + i)
(iii) Conjugate of (-√5 – √7i) is (-√5 + √7i)
(iv) -√-5 = -√5 × √-1 = -√5i
Conjugate of -√-5 is √5i
(v) Conjugate of 5i is -5i
(vi) Conjugate of √5 – i is √5 + i
(vii) Conjugate of √2 + √3i is √2 – √3i

Maharashtra-Board-Solutions

Question 2.
Express the following in the form of a + ib, a, b ∈ R, i = √-1. State the values of a and b:
(i) (1 + 2i)(-2 + i)
(ii) \(\frac{\mathrm{i}(4+3 \mathrm{i})}{(1-\mathrm{i})}\)
(iii) \(\frac{(2+i)}{(3-i)(1+2 i)}\)
(iv) \(\frac{3+2 i}{2-5 i}+\frac{3-2 i}{2+5 i}\)
(v) \(\frac{2+\sqrt{-3}}{4+\sqrt{-3}}\)
(vi) (2 + 3i)(2 – 3i)
(vii) \(\frac{4 i^{8}-3 i^{9}+3}{3 i^{11}-4 i^{10}-2}\)
Solution:
Maharashtra-Board-11th-Commerce-Maths-Solutions-Chapter-3-Complex-Numbers-Ex-3.1-Q2
Maharashtra-Board-11th-Commerce-Maths-Solutions-Chapter-3-Complex-Numbers-Ex-3.1-Q2.1
Maharashtra-Board-11th-Commerce-Maths-Solutions-Chapter-3-Complex-Numbers-Ex-3.1-Q2.2
Maharashtra-Board-11th-Commerce-Maths-Solutions-Chapter-3-Complex-Numbers-Ex-3.1-Q2.3
Maharashtra-Board-11th-Commerce-Maths-Solutions-Chapter-3-Complex-Numbers-Ex-3.1-Q2.4
Maharashtra-Board-11th-Commerce-Maths-Solutions-Chapter-3-Complex-Numbers-Ex-3.1-Q2.5

Question 3.
Show that (-1 + √3i) 3 is a real number.
Solution:
(-1 + √3i) 3
= (-1) 3 + 3(-1) 2 (√3i) + 3(-1)(√3i) 2 +(√3i) 3 [∵ (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 ]
= -1 + 3√3i – 3(3i 2 ) + 3√3 i 3
= -1 + 3√3i – 3(-3) – 3√3i [∵ i 2 = -1, i 3 = -1]
= -1 + 9
= 8, which is a real number.

Question 4.
Evaluate the following:
(i) i 35
(ii) i 888
(iii) i 93
(iv) i 116
(v) i 403
(vi) \(\frac{1}{i^{58}}\)
(vii) i 30 + i 40 + i 50 + i 60
Solution:
We know that, i 2 = -1, i 3 = -i, i 4 = 1
(i) i 35 = (i 4 ) 8 (i 2 ) i = (1) 8 (-1) i = -i
(ii) i 888 = (i 4 ) 222 = (1) 222 = 1
(iii) i 93 = (i 4 ) 23 . i = (1) 23 . i = i
(iv) i 116 = (i 4 ) 29 = (1) 29 = 1
(v) i 403 = (i 4 ) 100 (i 2 ) i = (1) 100 (-1) i = -i
(vi) \(\frac{1}{i^{88}}=\frac{1}{\left(i^{4}\right)^{14} \cdot i^{2}}=\frac{1}{(1)^{14}(-1)}=-1\)
(vii) i 30 + i 40 + i 50 + i 60
= (i 4 ) 7 i 2 + (i 4 ) 10 + (i 4 ) 12 i 2 + (i 4 ) 15
= (1) 7 (-1) + (1) 10 + (1) 12 (-1) + (1) 15
= -1 + 1 – 1 + 1
= 0

Maharashtra-Board-Solutions

Question 5.
Show that 1 + i 10 + i 20 + i 30 is a real number.
Solution:
1 + i 10 + i 20 + i 30
= 1 + (i 4 ) 2 . i 2 + (i 4 ) 5 + (i 4 ) 7 . i 2
= 1 + (1) 2 (-1) + (1) 5 + (1) 7 (-1) [∵ i 4 = 1, i 2 = -1]
= 1 – 1 + 1 – 1
= 0, which is a real number.

Question 6.
Find the value of
(i) i 49 + i 68 + i 89 + i 110
(ii) i + i 2 + i 3 + i 4
Solution:
(i) i 49 + i 68 + i 89 + i 110
= (i 4 ) 12 . i + (i 4 ) 17 + (i 4 ) 22 . i + (i 4 ) 27 . i 2
= (1) 12 . i + (1) 17 + (1) 22 . i + (1) 27 (-1) ……[∵ i 4 = 1, i 2 = -1]
= i + 1 + i – 1
= 2i

(ii) i + i 2 + i 3 + i 4
= i + i 2 + i 2 . i + i 4
= i – 1 – i + 1 [∵ i 2 = -1, i 4 = 1]
= 0

Question 7.
Find the value of 1 + i 2 + i 4 + i 6 + i 8 + …… + i 20 .
Solution:
1 + i 2 + i 4 + i 6 + i 8 + ….. + i 20
= 1 + (i 2 + i 4 ) + (i 6 + i 8 ) + (i 10 + i 12 ) + (i 14 + i 16 ) + (i 18 + i 20 )
= 1 + [i 2 + (i 2 ) 2 ] + [(i 2 ) 3 + (i 2 ) 4 ] + [(i 2 ) 5 + (i 2 ) 6 ] + [(i 2 ) 7 + (i 2 ) 8 ] + [(i 2 ) 9 + (i 2 ) 10 ]
= 1 + [-1 + (- 1) 2 ] + [(-1) 3 + (-1) 4 ] + [(-1) 5 + (-1) 6 ] + [(-1) 7 + (-1) 8 ] + [(-1) 9 + (-1) 10 ] [∵ i 2 = -1]
= 1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + (-1 + 1) + (-1 + 1)
= 1 + 0 + 0 + 0 + 0 + 0
= 1

Question 8.
Find the values of x and y which satisfy the following equations (x, y ∈ R):
(i) (x + 2y) + (2x – 3y)i + 4i = 5
(ii) \(\frac{x+1}{1+\mathrm{i}}+\frac{y-1}{1-\mathrm{i}}=\mathrm{i}\)
Solution:
(i) (x + 2y) + (2x – 3y)i + 4i = 5
∴ (x + 2y) + (2x – 3y)i = 5 – 4i
Equating real and imaginary parts, we get
x + 2y = 5 ……..(i)
and 2x – 3y = -4 ………(ii)
Equation (i) × 2 – equation (ii) gives
7y = 14
∴ y = 2
Putting y- 2 in (i), we get
x + 2(2) = 5
∴ x + 4 = 5
∴ x = 1
∴ x = 1 and y = 2
Check:
If x = 1 and y = 2 satisfy the given condition, then our answer is correct.
L.H.S. = (x + 2y) + (2x – 3y)i + 4i
= (1 + 4) + (2 – 6)i + 4i
= 5 – 4i + 4i
= 5
= R.H.S.
Thus, our answer is correct.

(ii) \(\frac{x+1}{1+\mathrm{i}}+\frac{y-1}{1-\mathrm{i}}=\mathrm{i}\)
Maharashtra-Board-11th-Commerce-Maths-Solutions-Chapter-3-Complex-Numbers-Ex-3.1-Q8
(x + y) + (y – x – 2)i = 2i
(x + y) + (y – x – 2)i = 0 + 2i
Equating real and imaginary parts, we get
x + y = 0 and y – x – 2 = 2
∴ x + y = 0 ……(i)
and -x + y = 4 ……..(ii)
Adding (i) and (ii), we get
2y = 4
∴ y = 2
Putting y = 2 in (i), we get
x + 2 = 0
∴ x = -2
∴ x = -2 and y = 2

Maharashtra-Board-Solutions

Question 9.
Find the value of:
(i) x 3 – x 2 + x + 46, if x = 2 + 3i
(ii) 2x 3 – 11x 2 + 44x + 27, if x = \(\frac{25}{3-4 i}\)
Solution:
(i) x = 2 + 3i
∴ x – 2 = 3i
∴ (x – 2) 2 = 9i 2
∴ x 2 – 4x + 4 = 9(-1) …..[∵ i 2 = -1]
∴ x 2 – 4x + 13 = 0 ……(i)
Maharashtra-Board-11th-Commerce-Maths-Solutions-Chapter-3-Complex-Numbers-Ex-3.1-Q9
∴ x 3 – x 2 + x + 46 = (x 2 – 4x + 13)(x + 3) + 7
= 0(x + 3) + 7 ……[From (i)]
= 7

(ii) x = \(\frac{25}{3-4 i}\)
Maharashtra-Board-11th-Commerce-Maths-Solutions-Chapter-3-Complex-Numbers-Ex-3.1-Q9.1
∴ x = 3 + 4i
∴ x – 3 = 4i
∴ (x – 3) 2 = 16i 2
∴ x 2 – 6x + 9 = 16(-1) …….[∵ i 2 = -1]
∴ x 2 – 6x + 25 = 0 …….(i)
Maharashtra-Board-11th-Commerce-Maths-Solutions-Chapter-3-Complex-Numbers-Ex-3.1-Q9.2
∴ 2x 3 – 11x 2 + 44x + 27
= (x 2 – 6x + 25) (2x + 1) + 2
= 0 . (2x + 1) + 2 ……[From (i)]
= 0 + 2
= 2