Complex Numbers Class 11 Commerce Maths 1 Chapter 3 Exercise 3.1 Answers Maharashtra Board
Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 3 Complex Numbers Ex 3.1 Questions and Answers.
Std 11 Maths 1 Exercise 3.1 Solutions Commerce Maths
   Question 1.
   
   Write the conjugates of the following complex numbers:
   
   (i) 3 + i
   
   (ii) 3 – i
   
   (iii) -√5 – √7i
   
   (iv) -√-5
   
   (v) 5i
   
   (vi) √5 – i
   
   (vii) √2 + √3i
   
   Solution:
   
   (i) Conjugate of (3 + i) is (3 – i)
   
   (ii) Conjugate of (3 – i) is (3 + i)
   
   (iii) Conjugate of (-√5 – √7i) is (-√5 + √7i)
   
   (iv) -√-5 = -√5 × √-1 = -√5i
   
   Conjugate of -√-5 is √5i
   
   (v) Conjugate of 5i is -5i
   
   (vi) Conjugate of √5 – i is √5 + i
   
   (vii) Conjugate of √2 + √3i is √2 – √3i
  
    
  
   Question 2.
   
   Express the following in the form of a + ib, a, b ∈ R, i = √-1. State the values of a and b:
   
   (i) (1 + 2i)(-2 + i)
   
   (ii) \(\frac{\mathrm{i}(4+3 \mathrm{i})}{(1-\mathrm{i})}\)
   
   (iii) \(\frac{(2+i)}{(3-i)(1+2 i)}\)
   
   (iv) \(\frac{3+2 i}{2-5 i}+\frac{3-2 i}{2+5 i}\)
   
   (v) \(\frac{2+\sqrt{-3}}{4+\sqrt{-3}}\)
   
   (vi) (2 + 3i)(2 – 3i)
   
   (vii) \(\frac{4 i^{8}-3 i^{9}+3}{3 i^{11}-4 i^{10}-2}\)
   
   Solution:
   
    
   
    
   
    
   
    
   
    
   
    
  
   Question 3.
   
   Show that (-1 + √3i)
   
    3
   
   is a real number.
   
   Solution:
   
   (-1 + √3i)
   
    3
   
   
   = (-1)
   
    3
   
   + 3(-1)
   
    2
   
   (√3i) + 3(-1)(√3i)
   
    2
   
   +(√3i)
   
    3
   
   [∵ (a + b)
   
    3
   
   = a
   
    3
   
   + 3a
   
    2
   
   b + 3ab
   
    2
   
   + b
   
    3
   
   ]
   
   = -1 + 3√3i – 3(3i
   
    2
   
   ) + 3√3 i
   
    3
   
   
   = -1 + 3√3i – 3(-3) – 3√3i [∵ i
   
    2
   
   = -1, i
   
    3
   
   = -1]
   
   = -1 + 9
   
   = 8, which is a real number.
  
   Question 4.
   
   Evaluate the following:
   
   (i) i
   
    35
   
   
   (ii) i
   
    888
   
   
   (iii) i
   
    93
   
   
   (iv) i
   
    116
   
   
   (v) i
   
    403
   
   
   (vi) \(\frac{1}{i^{58}}\)
   
   (vii) i
   
    30
   
   + i
   
    40
   
   + i
   
    50
   
   + i
   
    60
   
   
   Solution:
   
   We know that, i
   
    2
   
   = -1, i
   
    3
   
   = -i, i
   
    4
   
   = 1
   
   (i) i
   
    35
   
   = (i
   
    4
   
   )
   
    8
   
   (i
   
    2
   
   ) i = (1)
   
    8
   
   (-1) i = -i
   
   (ii) i
   
    888
   
   = (i
   
    4
   
   )
   
    222
   
   = (1)
   
    222
   
   = 1
   
   (iii) i
   
    93
   
   = (i
   
    4
   
   )
   
    23
   
   . i = (1)
   
    23
   
   . i = i
   
   (iv) i
   
    116
   
   = (i
   
    4
   
   )
   
    29
   
   = (1)
   
    29
   
   = 1
   
   (v) i
   
    403
   
   = (i
   
    4
   
   )
   
    100
   
   (i
   
    2
   
   ) i = (1)
   
    100
   
   (-1) i = -i
   
   (vi) \(\frac{1}{i^{88}}=\frac{1}{\left(i^{4}\right)^{14} \cdot i^{2}}=\frac{1}{(1)^{14}(-1)}=-1\)
   
   (vii) i
   
    30
   
   + i
   
    40
   
   + i
   
    50
   
   + i
   
    60
   
   
   = (i
   
    4
   
   )
   
    7
   
   i
   
    2
   
   + (i
   
    4
   
   )
   
    10
   
   + (i
   
    4
   
   )
   
    12
   
   i
   
    2
   
   + (i
   
    4
   
   )
   
    15
   
   
   = (1)
   
    7
   
   (-1) + (1)
   
    10
   
   + (1)
   
    12
   
   (-1) + (1)
   
    15
   
   
   = -1 + 1 – 1 + 1
   
   = 0
  
    
  
   Question 5.
   
   Show that 1 + i
   
    10
   
   + i
   
    20
   
   + i
   
    30
   
   is a real number.
   
   Solution:
   
   1 + i
   
    10
   
   + i
   
    20
   
   + i
   
    30
   
   
   = 1 + (i
   
    4
   
   )
   
    2
   
   . i
   
    2
   
   + (i
   
    4
   
   )
   
    5
   
   + (i
   
    4
   
   )
   
    7
   
   . i
   
    2
   
   
   = 1 + (1)
   
    2
   
   (-1) + (1)
   
    5
   
   + (1)
   
    7
   
   (-1) [∵ i
   
    4
   
   = 1, i
   
    2
   
   = -1]
   
   = 1 – 1 + 1 – 1
   
   = 0, which is a real number.
  
   Question 6.
   
   Find the value of
   
   (i) i
   
    49
   
   + i
   
    68
   
   + i
   
    89
   
   + i
   
    110
   
   
   (ii) i + i
   
    2
   
   + i
   
    3
   
   + i
   
    4
   
   
   Solution:
   
   (i) i
   
    49
   
   + i
   
    68
   
   + i
   
    89
   
   + i
   
    110
   
   
   = (i
   
    4
   
   )
   
    12
   
   . i + (i
   
    4
   
   )
   
    17
   
   + (i
   
    4
   
   )
   
    22
   
   . i + (i
   
    4
   
   )
   
    27
   
   . i
   
    2
   
   
   = (1)
   
    12
   
   . i + (1)
   
    17
   
   + (1)
   
    22
   
   . i + (1)
   
    27
   
   (-1) ……[∵ i
   
    4
   
   = 1, i
   
    2
   
   = -1]
   
   = i + 1 + i – 1
   
   = 2i
  
   (ii) i + i
   
    2
   
   + i
   
    3
   
   + i
   
    4
   
   
   = i + i
   
    2
   
   + i
   
    2
   
   . i + i
   
    4
   
   
   = i – 1 – i + 1 [∵ i
   
    2
   
   = -1, i
   
    4
   
   = 1]
   
   = 0
  
   Question 7.
   
   Find the value of 1 + i
   
    2
   
   + i
   
    4
   
   + i
   
    6
   
   + i
   
    8
   
   + …… + i
   
    20
   
   .
   
   Solution:
   
   1 + i
   
    2
   
   + i
   
    4
   
   + i
   
    6
   
   + i
   
    8
   
   + ….. + i
   
    20
   
   
   = 1 + (i
   
    2
   
   + i
   
    4
   
   ) + (i
   
    6
   
   + i
   
    8
   
   ) + (i
   
    10
   
   + i
   
    12
   
   ) + (i
   
    14
   
   + i
   
    16
   
   ) + (i
   
    18
   
   + i
   
    20
   
   )
   
   = 1 + [i
   
    2
   
   + (i
   
    2
   
   )
   
    2
   
   ] + [(i
   
    2
   
   )
   
    3
   
   + (i
   
    2
   
   )
   
    4
   
   ] + [(i
   
    2
   
   )
   
    5
   
   + (i
   
    2
   
   )
   
    6
   
   ] + [(i
   
    2
   
   )
   
    7
   
   + (i
   
    2
   
   )
   
    8
   
   ] + [(i
   
    2
   
   )
   
    9
   
   + (i
   
    2
   
   )
   
    10
   
   ]
   
   = 1 + [-1 + (- 1)
   
    2
   
   ] + [(-1)
   
    3
   
   + (-1)
   
    4
   
   ] + [(-1)
   
    5
   
   + (-1)
   
    6
   
   ] + [(-1)
   
    7
   
   + (-1)
   
    8
   
   ] + [(-1)
   
    9
   
   + (-1)
   
    10
   
   ] [∵ i
   
    2
   
   = -1]
   
   = 1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + (-1 + 1) + (-1 + 1)
   
   = 1 + 0 + 0 + 0 + 0 + 0
   
   = 1
  
   Question 8.
   
   Find the values of x and y which satisfy the following equations (x, y ∈ R):
   
   (i) (x + 2y) + (2x – 3y)i + 4i = 5
   
   (ii) \(\frac{x+1}{1+\mathrm{i}}+\frac{y-1}{1-\mathrm{i}}=\mathrm{i}\)
   
   Solution:
   
   (i) (x + 2y) + (2x – 3y)i + 4i = 5
   
   ∴ (x + 2y) + (2x – 3y)i = 5 – 4i
   
   Equating real and imaginary parts, we get
   
   x + 2y = 5 ……..(i)
   
   and 2x – 3y = -4 ………(ii)
   
   Equation (i) × 2 – equation (ii) gives
   
   7y = 14
   
   ∴ y = 2
   
   Putting y- 2 in (i), we get
   
   x + 2(2) = 5
   
   ∴ x + 4 = 5
   
   ∴ x = 1
   
   ∴ x = 1 and y = 2
   
   Check:
   
   If x = 1 and y = 2 satisfy the given condition, then our answer is correct.
   
   L.H.S. = (x + 2y) + (2x – 3y)i + 4i
   
   = (1 + 4) + (2 – 6)i + 4i
   
   = 5 – 4i + 4i
   
   = 5
   
   = R.H.S.
   
   Thus, our answer is correct.
  
   (ii) \(\frac{x+1}{1+\mathrm{i}}+\frac{y-1}{1-\mathrm{i}}=\mathrm{i}\)
   
    
   
   (x + y) + (y – x – 2)i = 2i
   
   (x + y) + (y – x – 2)i = 0 + 2i
   
   Equating real and imaginary parts, we get
   
   x + y = 0 and y – x – 2 = 2
   
   ∴ x + y = 0 ……(i)
   
   and -x + y = 4 ……..(ii)
   
   Adding (i) and (ii), we get
   
   2y = 4
   
   ∴ y = 2
   
   Putting y = 2 in (i), we get
   
   x + 2 = 0
   
   ∴ x = -2
   
   ∴ x = -2 and y = 2
  
    
  
   Question 9.
   
   Find the value of:
   
   (i) x
   
    3
   
   – x
   
    2
   
   + x + 46, if x = 2 + 3i
   
   (ii) 2x
   
    3
   
   – 11x
   
    2
   
   + 44x + 27, if x = \(\frac{25}{3-4 i}\)
   
   Solution:
   
   (i) x = 2 + 3i
   
   ∴ x – 2 = 3i
   
   ∴ (x – 2)
   
    2
   
   = 9i
   
    2
   
   
   ∴ x
   
    2
   
   – 4x + 4 = 9(-1) …..[∵ i
   
    2
   
   = -1]
   
   ∴ x
   
    2
   
   – 4x + 13 = 0 ……(i)
   
    
   
   ∴ x
   
    3
   
   – x
   
    2
   
   + x + 46 = (x
   
    2
   
   – 4x + 13)(x + 3) + 7
   
   = 0(x + 3) + 7 ……[From (i)]
   
   = 7
  
   (ii) x = \(\frac{25}{3-4 i}\)
   
    
   
   ∴ x = 3 + 4i
   
   ∴ x – 3 = 4i
   
   ∴ (x – 3)
   
    2
   
   = 16i
   
    2
   
   
   ∴ x
   
    2
   
   – 6x + 9 = 16(-1) …….[∵ i
   
    2
   
   = -1]
   
   ∴ x
   
    2
   
   – 6x + 25 = 0 …….(i)
   
    
   
   ∴ 2x
   
    3
   
   – 11x
   
    2
   
   + 44x + 27
   
   = (x
   
    2
   
   – 6x + 25) (2x + 1) + 2
   
   = 0 . (2x + 1) + 2 ……[From (i)]
   
   = 0 + 2
   
   = 2