Complex Numbers Class 11 Commerce Maths 1 Chapter 3 Exercise 3.3 Answers Maharashtra Board
Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 3 Complex Numbers Ex 3.3 Questions and Answers.
Std 11 Maths 1 Exercise 3.3 Solutions Commerce Maths
Question 1.
If ω is a complex cube root of unity, show that
(i) (2 – ω)(2 – ω
2
) = 7
(ii) (2 + ω + ω
2
)
3
– (1 – 3ω + ω
2
)
3
= 65
(iii) \(\frac{\left(\mathbf{a}+\mathbf{b} \omega+\mathbf{c} \omega^{2}\right)}{\mathbf{c}+\mathbf{a} \omega+\mathbf{b} \omega^{2}}\) = ω
2
Solution:
ω is the complex cube root of unity.
∴ ω
3
= 1 and 1 + ω + ω
2
= 0
Also, 1 + ω
2
= -ω, 1 + ω = -ω
2
and ω + ω
2
= -1
(i) L.H.S. = (2 – ω)(2 – ω
2
)
= 4 – 2ω
2
– 2ω + ω
3
= 4 – 2(ω
2
+ ω) + 1
= 4 – 2(-1) + 1
= 4 + 2 + 1
= 7
= R.H.S.
(ii) L.H.S. = (2 + ω + ω
2
)
3
– (1 – 3ω + ω
2
)
3
= [2 + (ω + ω
2
)]
3
– [-3ω + (1 + ω
2
)]
3
= (2 – 1)
3
– (-3ω – ω)
3
= 13 – (-4ω)
3
= 1 + 64ω
3
= 1 + 64(1)
= 65
= R.H.S.
(iii) L.H.S. =\(\frac{\left(\mathbf{a}+\mathbf{b} \omega+\mathbf{c} \omega^{2}\right)}{\mathbf{c}+\mathbf{a} \omega+\mathbf{b} \omega^{2}}\)
= \(\frac{a \omega^{3}+b \omega^{4}+c \omega^{2}}{c+a \omega+b \omega^{2}}\) ……[∵ ω
3
= 1, ω
4
= ω]
= \(\frac{\omega^{2}\left(c+a \omega+b \omega^{2}\right)}{c+a \omega+b \omega^{2}}\)
= ω
2
= R.H.S.
Question 2.
If ω is a complex cube root of unity, find the value of
(i) ω + \(\frac{1}{\omega}\)
(ii) ω
2
+ ω
3
+ ω
4
(iii) (1 + ω
2
)
3
(iv) (1 – ω – ω
2
)
3
+ (1 – ω + ω
2
)
3
(v) (1 + ω)(1 + ω
2
)(1 + ω
4
)(1 + ω
8
)
Solution:
ω is the complex cube root of unity.
∴ ω
3
= 1 and 1 + ω + ω
2
= 0
Also, 1 + ω
2
= -ω, 1 + ω = -ω
2
and ω + ω
2
= -1
(i) ω + \(\frac{1}{\omega}\)
= \(\frac{\omega^{2}+1}{\omega}\)
= \(\frac{-\omega}{\omega}\)
= -1
(ii) ω
2
+ ω
3
+ ω
4
= ω
2
(1 + ω + ω
2
)
= ω
2
(0)
= 0
(iii) (1 + ω
2
)
3
= (-ω)
3
= -ω
3
= -1
(iv) (1 – ω – ω
2
)
3
+ (1 – ω + ω
2
)
3
= [1 – (ω + ω
2
)]
3
+ [(1 + ω
2
) – ω]
3
= [1 – (-1)]
3
+ (-ω – ω)
3
= 2
3
+ (-2ω)
3
= 8 – 8ω
3
= 8 – 8(1)
= 0
(v) (1 + ω)(1 + ω
2
)(1 + ω
4
)(1 + ω
8
)
= (1 + ω)(1 + ω
2
)(1 + ω)(1 + ω
2
) …..[∵ ω
3
= 1, ω
4
= ω]
= (-ω
2
)(-ω)(-ω
2
)(-ω)
= ω
6
= (ω
3
)
2
= (1)
2
= 1
Question 3.
If α and β are the complex cube roots of unity, show that α
2
+ β
2
+ αβ = 0.
Solution:
α and β are the complex cube roots of unity.
∴ α – β = -1
L.H.S. = α
2
+ β
2
+ αβ
= α
2
+ 2αβ + β
2
+ αβ – 2αβ ……[Adding and subtracting 2αβ]
= (α
2
+ 2αβ + β
2
) – αβ
= (α + β)
2
– αβ
= (-1)
2
– 1
= 1 – 1
= 0
= R.H.S.
Question 4.
If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a
3
+ b
3
.
Solution:
x = a + b, y = αa + βb, z = aβ + bα
α and β are the complex cube roots of unity.
Question 5.
If ω is a complex cube root of unity, then prove the following:
(i) (ω
2
+ ω – 1)
3
= -8
(ii) (a + b) + (aω + bω
2
) + (aω
2
+ bω) = 0
Solution:
ω is the complex cube root of unity.
∴ ω
3
= 1 and 1 + ω + ω
2
= 0
Also, 1 + ω
2
= -ω, 1 + ω = -ω
2
and ω + ω
2
= -1
(i) L.H.S. = (ω
2
+ ω – 1)
3
= (-1 – 1)
3
= (-2)
3
= -8
= R.H.S.
(ii) L.H.S. = (a + b) + (aω + bω
2
) + (aω
2
+ bω)
= (a + aω + aω
2
) + (b + bω + bω
2
)
= a(1 + ω + ω
2
) + b(1 + ω + ω
2
)
= a(0) + b(0)
= 0
= R.H.S.