Complex Numbers Class 11 Commerce Maths 1 Chapter 3 Miscellaneous Exercise 3 Answers Maharashtra Board
Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 3 Complex Numbers Miscellaneous Exercise 3 Questions and Answers.
Std 11 Maths 1 Miscellaneous Exercise 3 Solutions Commerce Maths
   Question 1.
   
   Find the value of \(\frac{i^{592}+i^{590}+i^{588}+i^{586}+i^{584}}{i^{582}+i^{580}+i^{578}+i^{576}+i^{574}}\)
   
   Solution:
   
    
  
   Question 2.
   
   Find the value of √-3 × √-6.
   
   Solution:
   
   √-3 × √-6 = √3 × √-1 + √6 × √-1
   
   = √3i × √6i
   
   = √18i
   
    2
   
   
   = -3√2 ……[∵ i
   
    2
   
   = -1]
  
    
  
   Question 3.
   
   Simplify the following and express in the form a + ib.
   
   (i) 3 + √-64
   
   (ii) (2i
   
    3
   
   )
   
    2
   
   
   (iii) (2 + 3i) (1 – 4i)
   
   (iv) \(\frac{5}{2}\) i(-4 – 3i)
   
   (v) (1 + 3i)2 (3 + i)
   
   (vi) \(\frac{4+3 i}{1-i}\)
   
   (vii) \(\left(1+\frac{2}{i}\right)\left(3+\frac{4}{i}\right)(5+i)^{-1}\)
   
   (viii) \(\frac{\sqrt{5}+\sqrt{3} i}{\sqrt{5}-\sqrt{3} i}\)
   
   (ix) \(\frac{3 i^{5}+2 i^{7}+i^{9}}{i^{6}+2 i^{8}+3 i^{18}}\)
   
   (x) \(\frac{5+7 i}{4+3 i}+\frac{5+7 i}{4-3 i}\)
   
   Solution:
   
   (i) 3 + √-64
   
   = 3 + √64 . √-1
   
   = 3 + 8i
  
   (ii) (2i
   
    3
   
   )
   
    2
   
   
   = 4i
   
    6
   
   
   = 4(i
   
    2
   
   )
   
    3
   
   
   = 4(-1)
   
    3
   
   …..[∵ i
   
    2
   
   = -1]
   
   = -4
   
   = -4 + 0i
  
   (iii) (2 + 3i)(1 – 4i) = 2 – 8i + 3i – 12i
   
    2
   
   
   = 2 – 5i – 12(-1) ……[∵ i
   
    2
   
   = -1]
   
   = 14 – 5i
  
   (iv) \(\frac{5}{2}\) i(-4 – 3i)
   
   = \(\frac{5}{2}\) (-4i – 3i
   
    2
   
   )
   
   = \(\frac{5}{2}\) [-4i – 3(-1)] ……[∵ i
   
    2
   
   = -1]
   
   = \(\frac{5}{2}\) (3 – 4i)
   
   = \(\frac{15}{2}\) – 10i
  
    
  
   (v) (1 + 3i)
   
    2
   
   (3 + i)
   
   = (1 + 6i + 9i
   
    2
   
   ) (3 + i)
   
   = (1 + 6i – 9)(3 + i) ……[∵ i
   
    2
   
   = -1]
   
   = (-8 + 6i)(3 + i)
   
   = -24 – 8i + 18i + 6i
   
    2
   
   
   = -24 + 10i + 6(-1)
   
   = -24 + 10i – 6
   
   = -30 + 10i
  
    
   
    
   
    
  
   Question 4.
   
   Solve the following equations for x, y ∈ R:
   
   (i) (4 – 5i) x + (2 + 3i) y = 10 – 7i
   
   (ii) (1 – 3i) x + (2 + 5i) y = 1 + i
   
   (iii) \(\frac{x+i y}{2+3 i}\) = 7 – i
   
   (iv) (x + iy) (5 + 6i) = 2 + 3i
   
   (v) 2x + i
   
    9
   
   y (2 + i) = x i
   
    7
   
   + 10 i
   
    16
   
   
   Solution:
   
   (i) (4 – 5i) x + (2 + 3i)y = 10 – 7i
   
   ∴ (4x + 2y) + (3y – 5x) i = 10 – 7i
   
   Equating real and imaginary parts, we get
   
   4x + 2y = 10
   
   i.e., 2x + y = 5 …….(i)
   
   and 3y – 5x = -7 ……..(ii)
   
   Equation (i) × 3 – equation (ii) gives
   
   11x = 22
   
   ∴ x = 2
   
   Putting x = 2 in (i), we get
   
   2(2) + y = 5
   
   ∴ y = 1
   
   ∴ x = 2 and y = 1
  
   (ii) (1 – 3i) x + (2 + 5i) y = 7 + i
   
   ∴ (x + 2y) + (-3x + 5y)i = 7 + i
   
   Equating real and imaginary parts, we get
   
   x + 2y = 7 ……..(i)
   
   and -3x + 5y = 1 ……..(ii)
   
   Equation (i) × 3 + equation (ii) gives
   
   11y = 22
   
   ∴ y = 2
   
   Putting y = 2 in (i), we get
   
   x + 2(2) = 7
   
   ∴ x = 3
   
   ∴ x = 3 and y = 2
  
    
  
   (iii) \(\frac{x+i y}{2+3 i}\) = 7 – i
   
   ∴ x + iy = (7 – i)(2 + 3i)
   
   ∴ x + iy = 14 + 21i – 2i – 3i
   
    2
   
   
   ∴ x + iy = 14 + 19i – 3(-1) …..[∵ i
   
    2
   
   = -1]
   
   ∴ x + iy = 17 + 19i
   
   Equating real and imaginary parts, we get
   
   x = 17 and y = 19
  
   (iv) (x + iy)(5 + 6i) = 2 + 3i
   
    
   
   Equating real and imaginary parts, we get
   
   x = \(\frac{28}{61}\) and y = \(\frac{3}{61}\)
  
   (v) 2x + i
   
    9
   
   y (2 + i) = x i
   
    7
   
   + 10 i
   
    16
   
   
   ∴ 2x + (i
   
    4
   
   )
   
    2
   
   . i . y (2 + i) = x (i
   
    2
   
   )
   
    3
   
   . i + 10 . (i
   
    4
   
   )
   
    4
   
   
   ∴ 2x + (1)
   
    2
   
   . iy (2 + i) = x (-1)
   
    3
   
   . i + 10 (1)
   
    4
   
   ……[∵ i
   
    2
   
   = -1, i
   
    4
   
   = 1]
   
   ∴ 2x + 2yi + yi
   
    2
   
   = -xi + 10
   
   ∴ 2x + 2yi – y + xi = 10
   
   ∴ (2x – y) + (x + 2y)i = 10 + 0.i
   
   Equating real and imaginary parts, we get
   
   2x – y = 10 ……(i)
   
   and x + 2y = 0 ……..(ii)
   
   Equation (i) × 2 + equation (ii) gives
   
   5x = 20
   
   ∴ x = 4
   
   Putting x = 4 in (i), we get
   
   2(4) – y = 10
   
   ∴ y = 8 – 10
   
   ∴ y = -2
   
   ∴ x = 4 and y = -2
  
   Question 5.
   
   Find the value of:
   
   (i) x
   
    3
   
   + 2x
   
    2
   
   – 3x + 21, if x = 1 + 2i
   
   (ii) x
   
    3
   
   – 5x
   
    2
   
   + 4x + 8, if x = \(\frac{10}{3-i}\)
   
   (iii) x
   
    3
   
   – 3x
   
    2
   
   + 19x – 20, if x = 1 – 4i
   
   Solution:
   
   (i) x = 1 + 2i
   
   ∴ x – 1 = 2i
   
   ∴ (x – 1)
   
    2
   
   = 4i
   
    2
   
   
   ∴ x
   
    2
   
   – 2x + 1 = -4 ……[∵ i
   
    2
   
   = -1]
   
   ∴ x
   
    2
   
   – 2x + 5 = 0 ……(i)
   
    
   
   ∴ x
   
    3
   
   + 2x
   
    2
   
   – 3x + 21
   
   = (x
   
    2
   
   – 2x + 5)(x + 4) + 1
   
   = 0.(x + 4) + 1 ……[From (i)]
   
   = 0 + 1
   
   = 1
   
   ∴ x
   
    3
   
   + 2x
   
    2
   
   – 3x + 21 = 1
  
   (ii) x = \(\frac{10}{3-i}\)
   
    
   
   x
   
    3
   
   – 5x
   
    2
   
   + 4x + 8
   
   = (x
   
    2
   
   – 6x + 10)(x + 1) – 2
   
   = 0 . (x + 1) – 2 ……[From (i)]
   
   = 0 – 2
   
   ∴ x
   
    3
   
   – 5x
   
    2
   
   + 4x + 8 = -2
  
    
  
   (iii) x = 1 – 4i
   
   ∴ x – 1 = -4i
   
   ∴ (x – 1)
   
    2
   
   = 16i
   
    2
   
   
   ∴ x
   
    2
   
   – 2x + 1 = -16 ……[∵ i
   
    2
   
   = -1]
   
   ∴ x
   
    2
   
   – 2x + 17 = 0 ……(i)
   
    
   
   ∴ x
   
    3
   
   – 3x
   
    2
   
   + 19x – 20
   
   = (x
   
    2
   
   – 2x + 17) (x – 1) – 3
   
   = 0 . (x – 1) – 3 ….[From (i)]
   
   = 0 – 3
   
   = -3
   
   ∴ x
   
    3
   
   – 3x
   
    2
   
   + 19x – 20 = -3
  
   Question 6.
   
   Find the square roots of:
   
   (i) -16 + 30i
   
   (ii) 15 – 8i
   
   (iii) 2 + 2√3i
   
   (iv) 18i
   
   (v) 3 – 4i
   
   (vi) 6 + 8i
   
   Solution:
   
   (i) Let \(\sqrt{-16+30 \mathrm{i}}\) = a + bi, where a, b ∈ R
   
   Squaring on both sides, we get
   
   -16 + 30i = a
   
    2
   
   + b
   
    2
   
   i
   
    2
   
   + 2abi
   
   ∴ -16 + 30i = (a
   
    2
   
   – b
   
    2
   
   ) + 2abi …..[∵ i
   
    2
   
   = -1]
   
   Equating real and imaginary parts, we get
   
   a
   
    2
   
   – b
   
    2
   
   = -16 and 2ab = 30
   
   ∴ a
   
    2
   
   – b
   
    2
   
   = -16 and b = \(\frac{15}{a}\)
   
   ∴ a
   
    2
   
   – \(\left(\frac{15}{a}\right)^{2}\) = -16
   
   ∴ a
   
    2
   
   – \(\frac{225}{a^{2}}\) = -16
   
   ∴ a
   
    4
   
   – 225 = – 16a
   
    2
   
   
   ∴ a
   
    4
   
   + 16a
   
    2
   
   – 225 = 0
   
   ∴ (a
   
    2
   
   + 25)(a
   
    2
   
   – 9) = 0
   
   ∴ a
   
    2
   
   = -25 or a
   
    2
   
   = 9
   
   But a ∈ R, a
   
    2
   
   ≠ -25
   
   ∴ a
   
    2
   
   = 9
   
   ∴ a = ±3
   
   When a = 3, b = \(\frac{15}{3}\) = 5
   
   When a = -3, b = \(\frac{15}{-3}\) = -5
   
   ∴ \(\sqrt{-16+30 \mathrm{i}}\) = ±(3 + 5i)
  
   (ii) Let \(\sqrt{15-8 i}\) = a + bi, where a, b ∈ R
   
   Squaring on both sides, we get
   
   15 – 8i = a
   
    2
   
   + b
   
    2
   
   i
   
    2
   
   + 2abi
   
   ∴ 15 – 8i = (a
   
    2
   
   – b
   
    2
   
   ) + 2abi ……[∵ i
   
    2
   
   = -1]
   
   Equating real and imaginary parts, we get
   
   a
   
    2
   
   – b
   
    2
   
   = 15 and 2ab = -8
   
   ∴ a
   
    2
   
   – b
   
    2
   
   = 15 and b = \(\frac{-4}{a}\)
   
   ∴ a
   
    2
   
   – (\(\left(\frac{-4}{a}\right)^{2}\)) = 15
   
   ∴ a
   
    2
   
   – \(\frac{16}{a^{2}}\) = 15
   
   ∴ a
   
    4
   
   – 16 = 15a
   
    2
   
   
   ∴ a
   
    4
   
   – 15a
   
    2
   
   – 16 = 0
   
   ∴ (a
   
    2
   
   – 16)(a
   
    2
   
   + 1) = 0
   
   ∴ a
   
    2
   
   = 16 or a
   
    2
   
   = -1
   
   But a ∈ R, a
   
    2
   
   ≠ -1
   
   ∴ a
   
    2
   
   = 16
   
   ∴ a = ±4
   
   When a = 4, b = \(\frac{-4}{4}\) = -1
   
   When a = -4, b = \(\frac{-4}{-4}\) = 1
   
   \(\sqrt{15-8 i}\) = ±(4 – i)
  
    
  
   (iii) Let \(\sqrt{2+2 \sqrt{3} i}\) = a + bi, where a, b ∈ R.
   
   Squaring on both sides, we get
   
   2 – 2√3i = a
   
    2
   
   + b
   
    2
   
   i
   
    2
   
   + 2abi
   
   ∴ 2 – 2√3i = a
   
    2
   
   – b
   
    2
   
   + 2abi …..[∵ i
   
    2
   
   = -1]
   
   Equating real and imaginary parts, we get
   
   a
   
    2
   
   – b
   
    2
   
   = 2 and 2ab = 2√3
   
   ∴ a
   
    2
   
   – b
   
    2
   
   = 2 and b = \(\frac{\sqrt{3}}{\mathrm{a}}\)
   
   ∴ a
   
    2
   
   – \(\left(\frac{\sqrt{3}}{a}\right)^{2}\) = 2
   
   ∴ a
   
    2
   
   – \(\frac{3}{a^{2}}\) = 2
   
   ∴ a
   
    4
   
   – 3 = 2a
   
    2
   
   
   ∴ a
   
    4
   
   – 2a
   
    2
   
   – 3 = 0
   
   ∴ (a
   
    2
   
   – 3)(a
   
    2
   
   + 1) = 0
   
   ∴ a
   
    2
   
   = 3 or a
   
    2
   
   = -1
   
   But a ∈ R, a
   
    2
   
   ≠ -1
   
   ∴ a
   
    2
   
   = 3
   
   ∴ a = ±√3
   
   When a = √3 , b = \(\frac{\sqrt{3}}{\sqrt{3}}\) = 1
   
   When a = -√3 , b = \(\frac{\sqrt{3}}{-\sqrt{3}}\) = -1
   
   ∴ \(\sqrt{2+2 \sqrt{3} i}\) = ±(√3 + i)
  
   (iv) Let \(\sqrt{18 \mathrm{i}}\) = a + bi, where a, b ∈ R
   
   Squaring on both sides, we get
   
   18i = a
   
    2
   
   + b
   
    2
   
   i
   
    2
   
   + 2abi
   
   ∴ 0 + 18i = a
   
    2
   
   – b
   
    2
   
   + 2abi …..[∵ i
   
    2
   
   = -1]
   
   Equating real and imaginary parts, we get
   
   a
   
    2
   
   – b
   
    2
   
   = 0 and 2ab = 18
   
   ∴ a
   
    2
   
   – b
   
    2
   
   = 0 and b = \(\frac{9}{\mathrm{a}}\)
   
   ∴ a
   
    2
   
   – \(\left(\frac{9}{a}\right)^{2}\) = 0
   
   ∴ a
   
    2
   
   – \(\frac{81}{a^{2}}\) = 0
   
   ∴ a
   
    4
   
   – 81 = 0
   
   ∴ (a
   
    2
   
   – 9) (a
   
    2
   
   + 9) = 0
   
   ∴ a
   
    2
   
   = 9 or a
   
    2
   
   = -9
   
   But a ∈ R, a
   
    2
   
   ≠ -9
   
   ∴ a
   
    2
   
   = 9
   
   ∴ a = ±3
   
   When a = 3, b = \(\frac{9}{3}\) = 3
   
   When a = 3, b = \(\frac{9}{-3}\) = -3
   
   ∴ \(\sqrt{18 \mathrm{i}}\) = ±3(1 + i)
  
   (v) Let \(\sqrt{3-4 i}\) = a + bi, where a, b ∈ R
   
   Squaring on both sides, we get
   
   3 – 4i = a
   
    2
   
   + b
   
    2
   
   i
   
    2
   
   + 2abi
   
   ∴ 3 – 4i = a
   
    2
   
   – b
   
    2
   
   + 2abi ……[∵ i
   
    2
   
   = -1]
   
   Equating real and imaginary parts, we get
   
   a
   
    2
   
   – b
   
    2
   
   = 3 and 2ab = -4
   
   ∴ a
   
    2
   
   – b
   
    2
   
   = 3 and b = \(\frac{-2}{a}\)
   
   ∴ a
   
    2
   
   – \(\left(-\frac{2}{a}\right)^{2}\) = 3
   
   ∴ a
   
    2
   
   – \(\frac{4}{a^{2}}\) = 3
   
   ∴ a
   
    4
   
   – 4 = 3a
   
    2
   
   
   ∴ a
   
    4
   
   – 3a
   
    2
   
   – 4 = 0
   
   ∴ (a
   
    2
   
   – 4)(a
   
    2
   
   + 1) = 0
   
   ∴ a
   
    2
   
   = 4 or a
   
    2
   
   = -1
   
   But, a ∈ R, a
   
    2
   
   ≠ -1
   
   ∴ a
   
    2
   
   = 4
   
   ∴ a = ±2
   
   When a = 2, b = \(\frac{-2}{2}\) = -1
   
   When a = -2, b = \(\frac{-2}{-2}\) = 1
   
   ∴ \(\sqrt{3-4 i}\) = ±(2 – i)
  
    
  
   (vi) Let \(\sqrt{6+8 i}\) = a + bi, where a, b ∈ R
   
   Squaring on both sides, we get
   
   6 + 8i = a
   
    2
   
   + b
   
    2
   
   i
   
    2
   
   + 2abi
   
   ∴ 6 + 8i = a
   
    2
   
   – b
   
    2
   
   + 2abi ……[∵ i
   
    2
   
   = -1]
   
   Equating real and imaginary parts, we get
   
   a
   
    2
   
   – b
   
    2
   
   = 6 and 2ab = 8
   
   ∴ a
   
    2
   
   – b
   
    2
   
   = 6 and b = \(\frac{4}{\mathrm{a}}\)
   
   ∴ a
   
    2
   
   – \(\left(\frac{4}{a}\right)^{2}\) = 6
   
   ∴ a
   
    2
   
   – \(\frac{16}{a^{2}}\) = 6
   
   ∴ a
   
    4
   
   – 16 = 6a
   
    2
   
   
   ∴ a
   
    4
   
   – 6a
   
    2
   
   – 16 = 0
   
   ∴ (a
   
    2
   
   – 8)(a
   
    2
   
   + 2) = 0
   
   ∴ a
   
    2
   
   = 8 or a
   
    2
   
   = -2
   
   But a ∈ R, a
   
    2
   
   ≠ -2
   
   ∴ a
   
    2
   
   = 8
   
   ∴ a = ±2√2
   
   When a = 2√2, b = \(\frac{4}{2 \sqrt{2}}\) = √2
   
   When a = -2√2, b = \(\frac{4}{-2 \sqrt{2}}\) = -√2
   
   ∴ \(\sqrt{6+8 i}\) = ±(2√2 + √2i) = ±√2(2 + i)