Mathematical Logic Class 12 Commerce Maths 1 Chapter 1 Exercise 1.9 Answers Maharashtra Board
Balbharati Maharashtra State Board 12th Commerce Maths Solution Book Pdf Chapter 1 Mathematical Logic Ex 1.9 Questions and Answers.
Std 12 Maths 1 Exercise 1.9 Solutions Commerce Maths
Question 1.
Without using truth table, show that
(i) p β q β‘ (p β§ q) β¨ (~p β§ ~q)
Solution:
LHS = p β q
β‘ (p β q) β§ (q β p)
β‘ (~p β¨ q) β§ (~(q β¨ p) β¦..(Conditional Law)
β‘ [~p β§ (~(q β¨ p)] β¨ [q β§ (~q β¨ p] β¦..(Distributive Law)
β‘ [(~p β§ ~q) β¨ (~p β§ p)] β¨ [(q β§ ~q) β¨ (q β§ p)] β¦β¦(Distributive Law)
β‘ [(~p β§ ~q) β¨ c] β¨ [c β¨ (q β§ p)] β¦..(Complement Law)
β‘ (~p β§ ~q) β¨ (q β§ p) β¦β¦(Identity Law)
β‘ (~p β§ ~q) β¨ (p β§ q) β¦β¦(Commutative Law)
β‘ (p β§ q) β¨ (~pβ§ q) β¦β¦(Commutative Law)
β‘ RHS.
(ii) p β§ [~p β¨ q) β¨ (~q)] β‘ p
Solution:
LHS = p β§ [(~p β¨ q) β¨ (~q)]
β‘ p β§ [~p β¨ (q β¨ ~q)] β¦β¦(Associative Law)
β‘ p β§ [~p β¨ t] β¦β¦.(Complement Law)
β‘ p β§ t β¦β¦(Identity Law)
β‘ p β¦β¦(Identity Law)
= RHS.
(iii) ~[(p β§ q) β ~(q)] β‘ p β§ q
Solution:
LHS = ~[(p β§ q) β ~(~q)]
β‘ (p β§ q) β§ ~(~q) β¦β¦(Negation of implication)
β‘ (p β§ q) β§ q β¦..(Negation of negation)
β‘ p β§ (q β§ q) β¦..(Associative Law)
β‘ P β§ q β¦β¦(Idempotent Law)
= RHS
(iv) ~r β ~(p β§ q) β‘ [~(q β r)] β (~p)
Solution:
LHS = ~r β ~(p β§ q)
β‘ ~q β (~p β¨ ~q) β¦β¦(De Morganβs Law)
β‘ ~(~r) β¨ (~p β¨~q) β¦..(Conditional Law)
β‘ r β¨ (~p β¨ ~q) β¦..(Involution Law)
β‘ r β¨ ~q β¨ ~p β¦..(Commutative Law)
β‘ (~q β¨ r) β¨ (~p) β¦β¦(Commutative Law)
β‘ ~(q β r) β¨ (~p) β¦β¦(Conditional Law)
β‘ ~(q β r) β (~p) β¦β¦(Conditional Law)
= RHS.
(v) (p β¨ q) β r β‘ (p β r) β§ (q β r)
Solution:
LHS = (p β¨ q) β r
β‘ ~(p β q) β¨ r β¦β¦..(Conditional Law)
β‘ (~p β§ ~q) β¨ r β¦β¦β¦.(De Morganβs Law)
β‘ (~p β¨ r) β§ (~q β¨ r) β¦β¦β¦..(Distributive Law)
β‘ (p β r) β§ (q β r) β¦β¦.(Conditional Law)
= RHS.
Question 2.
Using the algebra of statement, prove that:
(i) [p β§ (q β¨ r)] β¨ [~r β§ ~q β§ p] β‘ p
Solution:
LHS = [p β§ (q β¨ r)] β¨ [ ~r β§ ~q β§ p]
β‘ [p β§ (q β¨ r)] β¨ [(~r β§ ~q) β§ p] β¦β¦(Associative Law)
β‘ [p β§ (q β¨ r)] β¨ [(~q β§ ~r) β§ p] β¦β¦(Commutative Law)
β‘ [p β§ (q β¨ r)] β¨ [ ~ (q β¨ r) β§ p] β¦β¦(De Morganβs Law)
β‘ [p β§ (q β¨ r)] β¨ [p β§ ~(q β¨ r)] β¦β¦(Commutative Law)
β‘ p β§ [(q β¨ r) β¨ ~ (q β¨ r) ] β¦..(Distributive Law)
β‘ p β§ t β¦β¦.(Complement Law)
β‘ p β¦β¦(Identity Law)
= RHS.
(ii) (p β§ q) β¨ (p β§ ~q) β¨ (~p β§ ~q) β‘ p β¨ ~q
Solution:
LHS = (p β§ q) β¨ (p β§ ~q) β¨ (~p β§ ~ q)
β‘ (p β§ q) β¨ [(p β§ ~q) β¨ (~p β§ ~q)] β¦β¦(Associative Law)
β‘ (p β§ q) β¨ [(~q β§ p) β¨ (~q β§ ~p)] β¦..(CommutativeLaw)
β‘ (p β§ q) β¨ [ ~q β§ (p β¨ ~ p)] β¦..(Distributive Law)
β‘ (p β§ q) β¨ (~q β§ t) β¦β¦(Complement Law)
β‘ (p β§ q) β¨ (~q) β¦β¦.(Identity Law)
β‘ (p β¨ ~q) β§ (q β¨ ~q) β¦β¦(Distributive Law)
β‘ (p β¨ ~q) β§ t β¦β¦.(Complement Law)
β‘ p β¨ ~q β¦..(Identity Law)
= RHS.
(iii) (p β¨ q) β§ (~p β¨ ~q) β‘ (p β§ ~q) β¨ (~p β§ q)
Solution:
LHS = (p β¨ q) β§ (~p β¨ ~q)
β‘ [p β§ (~p β¨ ~q)] β¨ [q β§ (~p β¨ ~q)] β¦β¦(Distributive Law)
β‘ [(p β§ ~p) β¨ (p β§ ~q)] β¨ [q β§ ~p) β¨ (q β§ ~q)] β¦β¦(Distributive Law)
β‘ [c β¨ (p β§ ~q)] β¨ [(q β§ ~p) β¨ c] β¦β¦(Complement Law)
β‘ (p β§ ~q) β¨ (q β§ ~p) β¦β¦..(Identity Law)
β‘ (p β§ ~q) β¨ (~p β§ q) β¦β¦β¦(Commutative Law)
= RHS.