Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 2 Matrices Miscellaneous Exercise 2A Questions and Answers.
12th Maths Part 1 Matrices Miscellaneous Exercise 2A Questions And Answers Maharashtra Board
   Question 1.
   
   If A = \(\left[\begin{array}{lll}
   
   1 & 0 & 0 \\
   
   2 & 1 & 0 \\
   
   3 & 3 & 1
   
   \end{array}\right]\) then reduce it to I
   
    3
   
   by using column transformations.
   
   Solution:
   
   |A| = \(\left|\begin{array}{lll}
   
   1 & 0 & 0 \\
   
   2 & 1 & 0 \\
   
   3 & 3 & 1
   
   \end{array}\right|\)
   
   = 1(1 β 0) β 0 + 0 = 1 β  0
   
   β΄ A is a non-singular matrix.
   
   Hence, the required transformation is possible.
   
   Now, A = \(\left[\begin{array}{lll}
   
   1 & 0 & 0 \\
   
   2 & 1 & 0 \\
   
   3 & 3 & 1
   
   \end{array}\right]\)
   
   By C
   
    1
   
   β 2C
   
    2
   
   , we get, A ~ \(\left[\begin{array}{lll}
   
   1 & 0 & 0 \\
   
   0 & 1 & 0 \\
   
   -3 & 3 & 1
   
   \end{array}\right]\)
   
   By C
   
    1
   
   + 3C
   
    3
   
   and C
   
    2
   
   β 3C
   
    3
   
   , we get,
   
   A ~ \(\left[\begin{array}{lll}
   
   1 & 0 & 0 \\
   
   0 & 1 & 0 \\
   
   0 & 0 & 1
   
   \end{array}\right]\) = I
   
    3
   
   .
  
   Question 2.
   
   If A = \(\left[\begin{array}{lll}
   
   2 & 1 & 3 \\
   
   1 & 0 & 1 \\
   
   1 & 1 & 1
   
   \end{array}\right]\), then reduce it to I
   
    3
   
   by using row transformations.
   
   Solution:
   
   |A| = \(\left|\begin{array}{lll}
   
   2 & 1 & 3 \\
   
   1 & 0 & 1 \\
   
   1 & 1 & 1
   
   \end{array}\right|\)
   
   = 2 (0 β 1) β 1(1 β 1) + 3 (1 β 0)
   
   = -2 β 0 + 3 = 1 β  0
   
   β΄ A is a non-singular matrix.
   
   Hence, the required transformation is possible.
   
   Now, A = \(\left[\begin{array}{lll}
   
   2 & 1 & 3 \\
   
   1 & 0 & 1 \\
   
   1 & 1 & 1
   
   \end{array}\right]\)
   
   By R
   
    1
   
   β R
   
    2
   
   , we get,
   
    
   
   By R
   
    1
   
   β R
   
    3
   
   and By R
   
    2
   
   β R
   
    3
   
   , we get
   
   A ~ \(\left[\begin{array}{lll}
   
   1 & 0 & 0 \\
   
   0 & 1 & 0 \\
   
   0 & 0 & 1
   
   \end{array}\right]\) = I
   
    3
   
   .
  
    
  
   Question 3.
   
   Check whether the following matrices are invertible or not:
   
   (i) \(\left[\begin{array}{ll}
   
   1 & 0 \\
   
   0 & 1
   
   \end{array}\right]\)
   
   Solution:
   
   Let A = \(\left[\begin{array}{ll}
   
   1 & 0 \\
   
   0 & 1
   
   \end{array}\right]\)
   
   Then, |A| = \(\left|\begin{array}{ll}
   
   1 & 0 \\
   
   0 & 1
   
   \end{array}\right|\) = 1 β 0 = 1 β  0.
   
   β΄ A is a non-singular matrix.
   
   Hence, A
   
    -1
   
   exists.
  
   (ii) \(\left[\begin{array}{ll}
   
   1 & 1 \\
   
   1 & 1
   
   \end{array}\right]\)
   
   Solution:
   
   Let A = \(\left[\begin{array}{ll}
   
   1 & 1 \\
   
   1 & 1
   
   \end{array}\right]\)
   
   Then, |A| = \(\left|\begin{array}{ll}
   
   1 & 1 \\
   
   1 & 1
   
   \end{array}\right|\) = 1 β 1 = 0.
   
   β΄ A is a singular matrix.
   
   Hence, A
   
    -1
   
   does not exist.
  
   (iii) \(\left[\begin{array}{ll}
   
   1 & 2 \\
   
   3 & 3
   
   \end{array}\right]\)
   
   Solution:
   
   Let A = \(\left[\begin{array}{ll}
   
   1 & 2 \\
   
   3 & 3
   
   \end{array}\right]\)
   
   Then, |A| = \(\left|\begin{array}{ll}
   
   1 & 2 \\
   
   3 & 3
   
   \end{array}\right|\) = 3 β 6 = -3 β  0.
   
   β΄ A is a non-singular matrix.
   
   Hence, A
   
    -1
   
   exist.
  
    
  
   (iv) \(\left[\begin{array}{ll}
   
   2 & 3 \\
   
   10 & 15
   
   \end{array}\right]\)
   
   Solution:
   
   Let A = \(\left[\begin{array}{ll}
   
   2 & 3 \\
   
   10 & 15
   
   \end{array}\right]\)
   
   Then, |A| = \(\left|\begin{array}{ll}
   
   2 & 3 \\
   
   10 & 15
   
   \end{array}\right|\) = 30 β 30 = 0.
   
   β΄ A is a singular matrix.
   
   Hence, A
   
    -1
   
   does not exist.
  
   (v) \(\left[\begin{array}{rr}
   
   \cos \theta & \sin \theta \\
   
   -\sin \theta & \cos \theta
   
   \end{array}\right]\)
   
   Solution:
   
   Let A = \(\left[\begin{array}{rr}
   
   \cos \theta & \sin \theta \\
   
   -\sin \theta & \cos \theta
   
   \end{array}\right]\)
   
   Then, |A| = \(\left|\begin{array}{cc}
   
   \sec \theta & \tan \theta \\
   
   \tan \theta & \sec \theta
   
   \end{array}\right|\)
   
   = sec
   
    2
   
   ΞΈ β tan
   
    2
   
   ΞΈ = 1 β  0.
   
   β΄ A is a non-singular matrix.
   
   Hence, A
   
    -1
   
   exist.
  
   (vii) \(\left[\begin{array}{lll}
   
   3 & 4 & 3 \\
   
   1 & 1 & 0 \\
   
   1 & 4 & 5
   
   \end{array}\right]\)
   
   Solution:
   
   let A = \(\left[\begin{array}{lll}
   
   3 & 4 & 3 \\
   
   1 & 1 & 0 \\
   
   1 & 4 & 5
   
   \end{array}\right]\)
   
   Then, |A| = \(\left|\begin{array}{lll}
   
   3 & 4 & 3 \\
   
   1 & 1 & 0 \\
   
   1 & 4 & 5
   
   \end{array}\right|\)
   
   = 3(5 β 0) β 4(5 β 0) + 3(4 β 1)
   
   = 15 β 20 + 9 = 4 β  0
   
   β΄ A is a non-singular matrix.
   
   Hence, A
   
    -1
   
   exist.
  
    
  
   (viii) \(\left[\begin{array}{lll}
   
   1 & 2 & 3 \\
   
   2 & -1 & 3 \\
   
   1 & 2 & 3
   
   \end{array}\right]\)
   
   Solution:
   
   Let A = \(\left[\begin{array}{lll}
   
   1 & 2 & 3 \\
   
   2 & -1 & 3 \\
   
   1 & 2 & 3
   
   \end{array}\right]\)
   
   Then, |A| = \(\left|\begin{array}{lll}
   
   1 & 2 & 3 \\
   
   2 & -1 & 3 \\
   
   1 & 2 & 3
   
   \end{array}\right|\)
   
   = 1 (-3 -6) β 2 (6 β 3) + 3 (4 + 1)
   
   = -9 β 6 + 15 = 0
   
   β΄ A is a singular matrix.
   
   Hence, A
   
    -1
   
   does not exist.
  
   (ix) \(\left[\begin{array}{lll}
   
   1 & 2 & 3 \\
   
   3 & 4 & 5 \\
   
   4 & 6 & 8
   
   \end{array}\right]\)
   
   Solution:
   
   Let A = \(\left[\begin{array}{lll}
   
   1 & 2 & 3 \\
   
   3 & 4 & 5 \\
   
   4 & 6 & 8
   
   \end{array}\right]\)
   
   Then, |A| = \(\left|\begin{array}{lll}
   
   1 & 2 & 3 \\
   
   3 & 4 & 5 \\
   
   4 & 6 & 8
   
   \end{array}\right|\)
   
   = 1(32 β 30) β 2(24 β 20) + 3(18 β 16)
   
   = 2 β 8 + 6 = 0
   
   β΄ A is a singular matrix.
   
   Hence, A
   
    -1
   
   does not exist.
  
    
  
   Question 4.
   
   Find AB, if A = \(\left[\begin{array}{ccc}
   
   1 & 2 & 3 \\
   
   1 & -2 & -3
   
   \end{array}\right]\) and B = \(\left[\begin{array}{cc}
   
   1 & -1 \\
   
   1 & 2 \\
   
   1 & -2
   
   \end{array}\right]\) Examine whether AB has inverse or not.
   
   Solution:
   
    
   
   β΄ A is a non-singular matrix.
   
   Hence, (AB)
   
    -1
   
   exist.
  
   Question 5.
   
   If A = \(\left[\begin{array}{lll}
   
   x & 0 & 0 \\
   
   0 & y & 0 \\
   
   0 & 0 & z
   
   \end{array}\right]\) is a nonsingular matrix then find A
   
    -1
   
   by elementary row transformations.
   
   Hence, find the inverse of \(\left[\begin{array}{lll}
   
   2 & 0 & 0 \\
   
   0 & 1 & 0 \\
   
   0 & 0 & -1
   
   \end{array}\right]\)
   
   Solution:
   
   Since A is a non-singular matrix, then find A
   
    -1
   
   by using elementary row transformations.
   
   We write AA
   
    -1
   
   = I
   
    
   
   Comparing \(\left[\begin{array}{lll}
   
   2 & 0 & 0 \\
   
   0 & 1 & 0 \\
   
   0 & 0 & -1
   
   \end{array}\right]\) with \(\left[\begin{array}{lll}
   
   x & 0 & 0 \\
   
   0 & y & 0 \\
   
   0 & 0 & z
   
   \end{array}\right]\),
   
   we get, x = 2, y = 1, z = -1
   
   β΄ \(\frac{1}{x}\) = \(\frac{1}{2}\), \(\frac{1}{y}\) = \(\frac{1}{1}\) = 1, \(\frac{1}{z}\) = \(\frac{1}{-1}\) = -1
   
   \(\left[\begin{array}{lll}
   
   2 & 0 & 0 \\
   
   0 & 1 & 0 \\
   
   0 & 0 & -1
   
   \end{array}\right]\) is \(\left(\begin{array}{rrr}
   
   \frac{1}{2} & 0 & 0 \\
   
   0 & 1 & 0 \\
   
   0 & 0 & -1
   
   \end{array}\right)\).
  
    
  
   Question 6.
   
   if A = \(\left[\begin{array}{ll}
   
   1 & 2 \\
   
   3 & 4
   
   \end{array}\right]\) and X is a 2 Γ 2 matrix such that AX = I , then find X.
   
   Solution:
   
   We will reduce the matrix A to the identity matrix by using row transformations. During this pro¬cess, I will be converted to the matrix X.
   
   We have AX = I.
   
    
  
   Question 7.
   
   Find the inverse of each of the following matrices (if they exist).
   
   (i) \(\left[\begin{array}{ll}
   
   1 & -1 \\
   
   2 & 3
   
   \end{array}\right]\)
   
   Solution:
   
   Let A = \(\left[\begin{array}{ll}
   
   1 & -1 \\
   
   2 & 3
   
   \end{array}\right]\)
   
   β΄ |A| = \(\left|\begin{array}{ll}
   
   1 & -1 \\
   
   2 & 3
   
   \end{array}\right|\) = 3 + 2 = 5 β  0
   
   β΄ A
   
    -1
   
   exists.
   
   Consider AA
   
    -1
   
   = I
   
    
   
    
  
   (ii) \(\left[\begin{array}{ll}
   
   2 & 1 \\
   
   1 & -1
   
   \end{array}\right]\)
   
   Solution:
   
   Let A = \(\left[\begin{array}{ll}
   
   2 & 1 \\
   
   1 & -1
   
   \end{array}\right]\)
   
   β΄ |A| = \(\left|\begin{array}{ll}
   
   2 & 1 \\
   
   1 & -1
   
   \end{array}\right|\) = -2 β 1 = -3 β  0
   
   β΄ A
   
    -1
   
   exists.
   
   Consider AA
   
    -1
   
   = I
   
    
  
    
  
   (iii) \(\left[\begin{array}{ll}
   
   1 & 3 \\
   
   2 & 7
   
   \end{array}\right]\)
   
   Solution:
   
   Let A = \(\left[\begin{array}{ll}
   
   1 & 3 \\
   
   2 & 7
   
   \end{array}\right]\)
   
   β΄ |A| = \(\left|\begin{array}{ll}
   
   1 & 3 \\
   
   2 & 7
   
   \end{array}\right|\) = 7 β 6 = 1 β  0
   
   β΄ A
   
    -1
   
   exists.
   
   Consider AA
   
    -1
   
   = I
   
    
  
   (iv) \(\left[\begin{array}{ll}
   
   2 & -3 \\
   
   5 & 7
   
   \end{array}\right]\)
   
   Solution:
   
   Let A = \(\left[\begin{array}{ll}
   
   2 & -3 \\
   
   5 & 7
   
   \end{array}\right]\)
   
   β΄ |A| = \(\left|\begin{array}{ll}
   
   2 & -3 \\
   
   5 & 7
   
   \end{array}\right|\) = 14 + 15 = 29 β  0
   
   β΄ A
   
    -1
   
   exists.
   
   Consider AA
   
    -1
   
   = I
   
    
   
    
  
    
  
   (v) \(\left[\begin{array}{ll}
   
   2 & 1 \\
   
   7 & 4
   
   \end{array}\right]\)
   
   Solution:
   
   Let A = \(\left[\begin{array}{ll}
   
   2 & 1 \\
   
   7 & 4
   
   \end{array}\right]\)
   
   β΄ |A| = \(\left|\begin{array}{ll}
   
   2 & 1 \\
   
   7 & 4
   
   \end{array}\right|\) = 8 β 7 = 1 β  0
   
   β΄ A
   
    -1
   
   exists.
   
   Consider AA
   
    -1
   
   = I
   
    
  
   (vi) \(\left[\begin{array}{ll}
   
   3 & -10 \\
   
   2 & -7
   
   \end{array}\right]\)
   
   Solution:
   
   Let A = \(\left[\begin{array}{ll}
   
   3 & -10 \\
   
   2 & -7
   
   \end{array}\right]\)
   
   β΄ |A| = \(\left|\begin{array}{ll}
   
   3 & -10 \\
   
   2 & -7
   
   \end{array}\right|\) = -21 + 20 = -1 β  0
   
   β΄ A
   
    -1
   
   exists.
   
   Consider AA
   
    -1
   
   = I
   
    
   
    
  
    
  
   (vii) \(\left[\begin{array}{lll}
   
   2 & -3 & 3 \\
   
   2 & 2 & 3 \\
   
   3 & -2 & 2
   
   \end{array}\right]\)
   
   Solution:
   
   Let A = \(\left[\begin{array}{lll}
   
   2 & -3 & 3 \\
   
   2 & 2 & 3 \\
   
   3 & -2 & 2
   
   \end{array}\right]\)
   
   β΄ |A| = \(\left|\begin{array}{lll}
   
   2 & -3 & 3 \\
   
   2 & 2 & 3 \\
   
   3 & -2 & 2
   
   \end{array}\right|\)
   
   = 2(4 + 6) +3(4 β 9) + 3(-4 β 6)
   
   = 20 β 15 β 30 = -25 β  0
   
   β΄ A
   
    -1
   
   exists.
   
   Consider AA
   
    -1
   
   = I
   
    
   
    
   
    
   
    
  
   (viii) \(\left[\begin{array}{lll}
   
   1 & 3 & -2 \\
   
   -3 & 0 & -5 \\
   
   2 & 5 & 0
   
   \end{array}\right]\)
   
   Solution:
   
   Let A = \(\left[\begin{array}{lll}
   
   1 & 3 & -2 \\
   
   -3 & 0 & -5 \\
   
   2 & 5 & 0
   
   \end{array}\right]\)
   
   β΄ |A| = \(\left|\begin{array}{lll}
   
   1 & 3 & -2 \\
   
   -3 & 0 & -5 \\
   
   2 & 5 & 0
   
   \end{array}\right|\)
   
   = 1(0 + 25) + 3(0 + 10) + 2(-15 β 0)
   
   = 25 + 30 -30
   
   = 25 β  0
   
   β΄ A
   
    -1
   
   exists.
   
   Consider AA
   
    -1
   
   = I
   
    
   
    
   
    
   
    
  
   (ix) \(\left[\begin{array}{lll}
   
   2 & 0 & -1 \\
   
   5 & 1 & 0 \\
   
   0 & 1 & 3
   
   \end{array}\right]\)
   
   Solution:
   
   Let A =\(\left[\begin{array}{lll}
   
   2 & 0 & -1 \\
   
   5 & 1 & 0 \\
   
   0 & 1 & 3
   
   \end{array}\right]\)
   
   β΄ |A| = \(\left|\begin{array}{lll}
   
   2 & 0 & -1 \\
   
   5 & 1 & 0 \\
   
   0 & 1 & 3
   
   \end{array}\right|\)
   
   = 2(3 β 0) β 0 β 1(5 β 0)
   
   = 6 β 0 β 5 = 1 β  0
   
   β΄ A
   
    -1
   
   exists.
   
   Consider AA
   
    -1
   
   = I
   
    
   
    
   
   β΄ A
   
    -1
   
   = \(\left[\begin{array}{lll}
   
   3 & -1 & 1 \\
   
   -15 & 6 & -5 \\
   
   5 & -2 & 2
   
   \end{array}\right]\)
  
    
  
   (x) \(\left[\begin{array}{lll}
   
   1 & 2 & -2 \\
   
   0 & -2 & 1 \\
   
   -1 & 3 & 0
   
   \end{array}\right]\)
   
   Solution:
   
   Let A = \(\left[\begin{array}{lll}
   
   1 & 2 & -2 \\
   
   0 & -2 & 1 \\
   
   -1 & 3 & 0
   
   \end{array}\right]\)
   
   β΄ A
   
    -1
   
   = \(\left[\begin{array}{lll}
   
   1 & 2 & -2 \\
   
   0 & -2 & 1 \\
   
   -1 & 3 & 0
   
   \end{array}\right]\)
   
   = 1\(\left|\begin{array}{ll}
   
   -2 & 1 \\
   
   3 & 0
   
   \end{array}\right|\) β 2\(\left|\begin{array}{ll}
   
   0 & 1 \\
   
   -1 & 1
   
   \end{array}\right|\) β 2\(\left|\begin{array}{ll}
   
   0 & -2 \\
   
   -1 & 3
   
   \end{array}\right|\)
   
   |A| = 1(0 β 3) β 2(0 + 1) β 2(0 β 2)
   
   = -3 β 2 + 4
   
   = -1 β  0
   
   β΄ A
   
    -1
   
   exists.
   
   We have
   
   AA
   
    -1
   
   = I
   
    
   
    
   
   β΄ A
   
    -1
   
   = \(\left[\begin{array}{lll}
   
   3 & 6 & 2 \\
   
   1 & 2 & 1 \\
   
   2 & 5 & 2
   
   \end{array}\right]\)
  
   Question 8.
   
   Find the inverse of A = \(\left[\begin{array}{ccc}
   
   \cos \theta & -\sin \theta & 0 \\
   
   \sin \theta & \cos \theta & 0 \\
   
   0 & 0 & 1
   
   \end{array}\right]\) by
   
   (i) elementary row transformations
   
   Solution:
   
   |A| = \(\left|\begin{array}{ccc}
   
   \cos \theta & -\sin \theta & 0 \\
   
   \sin \theta & \cos \theta & 0 \\
   
   0 & 0 & 1
   
   \end{array}\right|\)
   
   = cosΞΈ (cosΞΈ β 0) + sinΞΈ (sinΞΈ β 0) + 0
   
   = cos
   
    2
   
   ΞΈ + sin
   
    2
   
   ΞΈ = 1 β  0
   
   β΄ A
   
    -1
   
   exists.
   
   (i) Consider AA
   
    -1
   
   = I
   
    
   
    
  
    
  
   (ii) elementary column transformations
   
   Solution:
   
   Consider A
   
    -1
   
   A = I
   
    
   
    
  
   Question 9.
   
   If A = \(\left[\begin{array}{ll}
   
   2 & 3 \\
   
   1 & 2
   
   \end{array}\right]\), B = \(\left[\begin{array}{ll}
   
   1 & 0 \\
   
   3 & 1
   
   \end{array}\right]\) find AB and (AB)
   
    -1
   
   . Verify that (AB)
   
    -1
   
   = B
   
    -1
   
   A
   
    -1
   
   
   Solution:
   
   AB = \(\left[\begin{array}{ll}
   
   2 & 3 \\
   
   1 & 2
   
   \end{array}\right]\) \(\left[\begin{array}{ll}
   
   1 & 0 \\
   
   3 & 1
   
   \end{array}\right]\)
   
    
   
    
   
    
   
    
   
   From (1) and (2), (AB)
   
    -1
   
   = B
   
    -1
   
   β A
   
    -1
   
   .
  
   Question 10.
   
   If A = \(\left[\begin{array}{ll}
   
   4 & 5 \\
   
   2 & 1
   
   \end{array}\right]\), then show that A
   
    -1
   
   = \(\frac{1}{6}\)(A β 5I)
   
   Solution:
   
   |A| = \(\left|\begin{array}{ll}
   
   4 & 5 \\
   
   2 & 1
   
   \end{array}\right|\) = 4 β 10 = -6 β  0
   
   β΄ A
   
    -1
   
   exists.
   
   Consider AA
   
    -1
   
   = I
   
    
   
    
   
    
  
    
  
   Question 11.
   
   Find matrix X such that AX = B, where A = \(\left[\begin{array}{ll}
   
   1 & 2 \\
   
   -1 & 3
   
   \end{array}\right]\) and B = \(\left[\begin{array}{ll}
   
   0 & 1 \\
   
   2 & 4
   
   \end{array}\right]\)
   
   Solution:
   
   AX = B
   
    
  
   Question 12.
   
   Find X, if AX = B where A = \(\left[\begin{array}{lll}
   
   1 & 2 & 3 \\
   
   -1 & 1 & 2 \\
   
   1 & 2 & 4
   
   \end{array}\right]\) and B = \(\left[\begin{array}{l}
   
   1 \\
   
   2 \\
   
   3
   
   \end{array}\right]\).
   
   Solution:
   
   AX = B
   
    
   
    
  
   Question 13.
   
   If A = \(\left[\begin{array}{ll}
   
   1 & 1 \\
   
   1 & 2
   
   \end{array}\right]\), B = \(\left[\begin{array}{ll}
   
   4 & 1 \\
   
   3 & 1
   
   \end{array}\right]\) and C = \(\left[\begin{array}{ll}
   
   24 & 7 \\
   
   31 & 9
   
   \end{array}\right]\) then find matrix X such that AXB = C.
   
   Solution:
   
   AXB = C
   
   β΄ \(\left(\begin{array}{ll}
   
   1 & 1 \\
   
   1 & 2
   
   \end{array}\right)(\mathrm{XB})\) =\(\left[\begin{array}{ll}
   
   24 & 7 \\
   
   31 & 9
   
   \end{array}\right]\)
   
   First we perform the row transformations.
   
    
   
    
  
    
  
   Question 14.
   
   Find the inverse of \(\left[\begin{array}{lll}
   
   1 & 2 & 3 \\
   
   1 & 1 & 5 \\
   
   2 & 4 & 7
   
   \end{array}\right]\) by adjoint method.
   
   Solution:
   
   Let A = \(\left[\begin{array}{lll}
   
   1 & 2 & 3 \\
   
   1 & 1 & 5 \\
   
   2 & 4 & 7
   
   \end{array}\right]\)
   
   β΄ |A| = \(\left|\begin{array}{lll}
   
   1 & 2 & 3 \\
   
   1 & 1 & 5 \\
   
   2 & 4 & 7
   
   \end{array}\right|\)
   
   = 1(7 β 20) β 2(7 β 10) + 3(4 β 2)
   
   = -13 + 6 + 6 = -1 β  0
   
   β΄ A
   
    -1
   
   exists.
   
   First we have to find the cofactor matrix
   
   = [A
   
    ij
   
   ]
   
    3Γ3
   
   where A
   
    ij
   
   = (-1)
   
    i+j
   
   M
   
    ij
   
   
   Now, A
   
    11
   
   = (-1)
   
    1+1
   
   M
   
    11
   
   = \(\left|\begin{array}{ll}
   
   1 & 5 \\
   
   4 & 7
   
   \end{array}\right|\) = 7 β 20 = -13
   
   A
   
    12
   
   = (-1)
   
    1+2
   
   M
   
    12
   
   = \(\left|\begin{array}{ll}
   
   1 & 5 \\
   
   2 & 7
   
   \end{array}\right|\) = -(7 β 10) = 3
   
    
   
    
  
   Question 15.
   
   Find the inverse of \(\left[\begin{array}{lll}
   
   1 & 0 & 1 \\
   
   0 & 2 & 3 \\
   
   1 & 2 & 1
   
   \end{array}\right]\) by adjoint method.
   
   Solution:
   
   where A = \(\left[\begin{array}{lll}
   
   1 & 0 & 1 \\
   
   0 & 2 & 3 \\
   
   1 & 2 & 1
   
   \end{array}\right]\)
   
   |A| = 1(2 β 6) β 0(0 β 3) + 1(0 β 2)
   
   |A| = -4 β 2
   
   |A| = -6 β  0
   
   β΄ A
   
    -1
   
   exists.
   
   First we have to find the cofactor matrix
   
   = [A
   
    ij
   
   ]3Γ3, where A
   
    ij
   
   = (-1)
   
    i+j
   
   M
   
    ij
   
   
    
   
    
  
    
  
   Question 16.
   
   Find A
   
    -1
   
   by adjoint method and by elementary transformations if A = \(\left[\begin{array}{lll}
   
   1 & 2 & 3 \\
   
   -1 & 1 & 2 \\
   
   1 & 2 & 4
   
   \end{array}\right]\)
   
   Solution:
   
   |A| = \(\left|\begin{array}{lll}
   
   1 & 2 & 3 \\
   
   -1 & 1 & 2 \\
   
   1 & 2 & 4
   
   \end{array}\right|\)
   
   = 1(4 β 4) β 2(-4 β 2) + 3(-2 β 1)
   
   = 0 + 12 β 9 = 3 β  0
   
   β΄ A
   
    -1
   
   exists.
   
   A
   
    -1
   
   by adjoint method :
   
   We have to find the cofactor matrix
   
   = [A
   
    ij
   
   ]
   
    3Γ3
   
   , where A
   
    ij
   
   = (-1)
   
    i+j
   
   M
   
    ij
   
   
    
   
    
   
    
   
    
  
   Question 17.
   
   Find the inverse of A = \(\left[\begin{array}{lll}
   
   1 & 0 & 1 \\
   
   0 & 2 & 3 \\
   
   1 & 2 & 1
   
   \end{array}\right]\) by elementary column transformations.
   
   Solution:
   
   |A| = \(\left|\begin{array}{lll}
   
   1 & 0 & 1 \\
   
   0 & 2 & 3 \\
   
   1 & 2 & 1
   
   \end{array}\right|\)
   
   = 1 (2 β 6) β 0 + 1 (0 β 2)
   
   = -4 β 2= -6 β  0
   
   β΄ A
   
    -1
   
   exists.
   
   Consider A
   
    -1
   
   A = I
   
   β΄ A
   
    -1
   
   \(\left[\begin{array}{lll}
   
   1 & 0 & 1 \\
   
   0 & 2 & 3 \\
   
   1 & 2 & 1
   
   \end{array}\right]\) = \(\left[\begin{array}{lll}
   
   1 & 0 & 0 \\
   
   0 & 1 & 0 \\
   
   0 & 0 & 1
   
   \end{array}\right]\)
   
   By C
   
    3
   
   β C
   
    1
   
   , we get,
   
    
   
    
  
    
  
   Question 18.
   
   Find the inverse of \(\left[\begin{array}{lll}
   
   1 & 2 & 3 \\
   
   1 & 1 & 5 \\
   
   2 & 4 & 7
   
   \end{array}\right]\) by elementary row transformations.
   
   Solution:
   
   Let A = \(\left[\begin{array}{lll}
   
   1 & 2 & 3 \\
   
   1 & 1 & 5 \\
   
   2 & 4 & 7
   
   \end{array}\right]\)
   
   β΄ |A| = \(\left|\begin{array}{lll}
   
   1 & 2 & 3 \\
   
   1 & 1 & 5 \\
   
   2 & 4 & 7
   
   \end{array}\right|\)
   
   = 1(7 β 20) β 2(7 β 10) + 3(4 β 2)
   
   = -13 + 6 + 6 = -1 β  0
   
   β΄ A
   
    -1
   
   exists.
   
   Consider AA
   
    -1
   
   = I
   
    
   
    
  
   Question 19.
   
   Show with usual notations that for any matrix A = [a
   
    ij
   
   ]
   
    3Γ3
   
   
   (i) a
   
    11
   
   A
   
    21
   
   + a
   
    12
   
   A
   
    22
   
   + a
   
    13
   
   A
   
    23
   
   = 0
   
   Solution:
   
   A = [a
   
    ij
   
   ]
   
    3Γ3
   
   = \(\left[\begin{array}{lll}
   
   a_{11} & a_{12} & a_{13} \\
   
   a_{21} & a_{22} & a_{23} \\
   
   a_{31} & a_{32} & a_{33}
   
   \end{array}\right]\)
   
   (i) A
   
    21
   
   = (-1)
   
    2+1
   
   M
   
    21
   
   = \(-\left|\begin{array}{ll}
   
   a_{12} & a_{13} \\
   
   a_{32} & a_{33}
   
   \end{array}\right|\)
   
   = -(a
   
    12
   
   a
   
    33
   
   β a
   
    13
   
   a
   
    32
   
   )
   
   = -a
   
    12
   
   a
   
    33
   
   + a
   
    13
   
   a
   
    32
   
   
   A
   
    22
   
   = (-1)
   
    2+2
   
   M
   
    22
   
   = \(\left|\begin{array}{ll}
   
   a_{11} & a_{13} \\
   
   a_{31} & a_{33}
   
   \end{array}\right|\)
   
   = a
   
    11
   
   a
   
    33
   
   β a
   
    13
   
   a
   
    31
   
   
   A
   
    23
   
   = (-1)
   
    2+3
   
   M
   
    23
   
   = \(-\left|\begin{array}{ll}
   
   a_{11} & a_{12} \\
   
   a_{31} & a_{32}
   
   \end{array}\right|\)
   
   = -(a
   
    11
   
   a
   
    32
   
   β a
   
    12
   
   a
   
    31
   
   )
   
   = -a
   
    11
   
   a
   
    32
   
   + a
   
    12
   
   a
   
    31
   
   
   β΄ a
   
    11
   
   A
   
    21
   
   + a
   
    12
   
   A
   
    22
   
   + a
   
    13
   
   A
   
    23
   
   
   = a
   
    11
   
   (-a
   
    12
   
   
    33
   
   + a
   
    13
   
   a
   
    32
   
   ) + a
   
    12
   
   (a
   
    11
   
   a
   
    33
   
   β a
   
    13
   
   a
   
    31
   
   ) + a
   
    13
   
   (-a
   
    11
   
   a
   
    32
   
   + a
   
    12
   
   a
   
    31
   
   )
   
   = -a
   
    11
   
   a
   
    12
   
   a
   
    33
   
   + a
   
    11
   
   a
   
    13
   
   a
   
    32
   
   + a
   
    11
   
   a
   
    12
   
   a
   
    33
   
   β a
   
    12
   
   a
   
    13
   
   a
   
    31
   
   β a
   
    11
   
   a
   
    13
   
   a
   
    32
   
   + a
   
    12
   
   a
   
    13
   
   a
   
    31
   
   
   = 0
  
    
  
   (ii) a
   
    11
   
   A
   
    11
   
   + a
   
    12
   
   A
   
    12
   
   + a
   
    13
   
   A
   
    13
   
   = |A|
   
   Solution:
   
    
  
   Question 20.
   
   If A = \(\left[\begin{array}{lll}
   
   1 & 0 & 1 \\
   
   0 & 2 & 3 \\
   
   1 & 2 & 1
   
   \end{array}\right]\) and B = \(\left[\begin{array}{lll}
   
   1 & 2 & 3 \\
   
   1 & 1 & 5 \\
   
   2 & 4 & 7
   
   \end{array}\right]\), then find a matrix X such that XA= B.
   
   Solution:
   
   Consider XA = B
   
    
   
   