Matrices Class 12 Maths 1 Miscellaneous Exercise 2A Solutions Maharashtra Board

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 2 Matrices Miscellaneous Exercise 2A Questions and Answers.

12th Maths Part 1 Matrices Miscellaneous Exercise 2A Questions And Answers Maharashtra Board

Question 1.
If A = \(\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right]\) then reduce it to I 3 by using column transformations.
Solution:
|A| = \(\left|\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right|\)
= 1(1 – 0) – 0 + 0 = 1 β‰  0
∴ A is a non-singular matrix.
Hence, the required transformation is possible.
Now, A = \(\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right]\)
By C 1 – 2C 2 , we get, A ~ \(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 3 & 1
\end{array}\right]\)
By C 1 + 3C 3 and C 2 – 3C 3 , we get,
A ~ \(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\) = I 3 .

Question 2.
If A = \(\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\), then reduce it to I 3 by using row transformations.
Solution:
|A| = \(\left|\begin{array}{lll}
2 & 1 & 3 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right|\)
= 2 (0 – 1) – 1(1 – 1) + 3 (1 – 0)
= -2 – 0 + 3 = 1 β‰  0
∴ A is a non-singular matrix.
Hence, the required transformation is possible.
Now, A = \(\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\)
By R 1 – R 2 , we get,
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-1
By R 1 – R 3 and By R 2 – R 3 , we get
A ~ \(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\) = I 3 .

Maharashtra-Board-Solutions

Question 3.
Check whether the following matrices are invertible or not:
(i) \(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|\) = 1 – 0 = 1 β‰  0.
∴ A is a non-singular matrix.
Hence, A -1 exists.

(ii) \(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right|\) = 1 – 1 = 0.
∴ A is a singular matrix.
Hence, A -1 does not exist.

(iii) \(\left[\begin{array}{ll}
1 & 2 \\
3 & 3
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
1 & 2 \\
3 & 3
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{ll}
1 & 2 \\
3 & 3
\end{array}\right|\) = 3 – 6 = -3 β‰  0.
∴ A is a non-singular matrix.
Hence, A -1 exist.

Maharashtra-Board-Solutions

(iv) \(\left[\begin{array}{ll}
2 & 3 \\
10 & 15
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
2 & 3 \\
10 & 15
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{ll}
2 & 3 \\
10 & 15
\end{array}\right|\) = 30 – 30 = 0.
∴ A is a singular matrix.
Hence, A -1 does not exist.

(v) \(\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{cc}
\sec \theta & \tan \theta \\
\tan \theta & \sec \theta
\end{array}\right|\)
= sec 2 ΞΈ – tan 2 ΞΈ = 1 β‰  0.
∴ A is a non-singular matrix.
Hence, A -1 exist.

(vii) \(\left[\begin{array}{lll}
3 & 4 & 3 \\
1 & 1 & 0 \\
1 & 4 & 5
\end{array}\right]\)
Solution:
let A = \(\left[\begin{array}{lll}
3 & 4 & 3 \\
1 & 1 & 0 \\
1 & 4 & 5
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{lll}
3 & 4 & 3 \\
1 & 1 & 0 \\
1 & 4 & 5
\end{array}\right|\)
= 3(5 – 0) – 4(5 – 0) + 3(4 – 1)
= 15 – 20 + 9 = 4 β‰  0
∴ A is a non-singular matrix.
Hence, A -1 exist.

Maharashtra-Board-Solutions

(viii) \(\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & -1 & 3 \\
1 & 2 & 3
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & -1 & 3 \\
1 & 2 & 3
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{lll}
1 & 2 & 3 \\
2 & -1 & 3 \\
1 & 2 & 3
\end{array}\right|\)
= 1 (-3 -6) – 2 (6 – 3) + 3 (4 + 1)
= -9 – 6 + 15 = 0
∴ A is a singular matrix.
Hence, A -1 does not exist.

(ix) \(\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
4 & 6 & 8
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
4 & 6 & 8
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
4 & 6 & 8
\end{array}\right|\)
= 1(32 – 30) – 2(24 – 20) + 3(18 – 16)
= 2 – 8 + 6 = 0
∴ A is a singular matrix.
Hence, A -1 does not exist.

Maharashtra-Board-Solutions

Question 4.
Find AB, if A = \(\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & -2 & -3
\end{array}\right]\) and B = \(\left[\begin{array}{cc}
1 & -1 \\
1 & 2 \\
1 & -2
\end{array}\right]\) Examine whether AB has inverse or not.
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-2
∴ A is a non-singular matrix.
Hence, (AB) -1 exist.

Question 5.
If A = \(\left[\begin{array}{lll}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right]\) is a nonsingular matrix then find A -1 by elementary row transformations.
Hence, find the inverse of \(\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\)
Solution:
Since A is a non-singular matrix, then find A -1 by using elementary row transformations.
We write AA -1 = I
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-3
Comparing \(\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\) with \(\left[\begin{array}{lll}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right]\),
we get, x = 2, y = 1, z = -1
∴ \(\frac{1}{x}\) = \(\frac{1}{2}\), \(\frac{1}{y}\) = \(\frac{1}{1}\) = 1, \(\frac{1}{z}\) = \(\frac{1}{-1}\) = -1
\(\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\) is \(\left(\begin{array}{rrr}
\frac{1}{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\).

Maharashtra-Board-Solutions

Question 6.
if A = \(\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\) and X is a 2 Γ— 2 matrix such that AX = I , then find X.
Solution:
We will reduce the matrix A to the identity matrix by using row transformations. During this pro¬cess, I will be converted to the matrix X.
We have AX = I.
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-4

Question 7.
Find the inverse of each of the following matrices (if they exist).
(i) \(\left[\begin{array}{ll}
1 & -1 \\
2 & 3
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
1 & -1 \\
2 & 3
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
1 & -1 \\
2 & 3
\end{array}\right|\) = 3 + 2 = 5 β‰  0
∴ A -1 exists.
Consider AA -1 = I
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-5
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-6

(ii) \(\left[\begin{array}{ll}
2 & 1 \\
1 & -1
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
2 & 1 \\
1 & -1
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
2 & 1 \\
1 & -1
\end{array}\right|\) = -2 – 1 = -3 β‰  0
∴ A -1 exists.
Consider AA -1 = I
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-7

Maharashtra-Board-Solutions

(iii) \(\left[\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right|\) = 7 – 6 = 1 β‰  0
∴ A -1 exists.
Consider AA -1 = I
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-8

(iv) \(\left[\begin{array}{ll}
2 & -3 \\
5 & 7
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
2 & -3 \\
5 & 7
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
2 & -3 \\
5 & 7
\end{array}\right|\) = 14 + 15 = 29 β‰  0
∴ A -1 exists.
Consider AA -1 = I
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-9
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-10

Maharashtra-Board-Solutions

(v) \(\left[\begin{array}{ll}
2 & 1 \\
7 & 4
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
2 & 1 \\
7 & 4
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
2 & 1 \\
7 & 4
\end{array}\right|\) = 8 – 7 = 1 β‰  0
∴ A -1 exists.
Consider AA -1 = I
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-11

(vi) \(\left[\begin{array}{ll}
3 & -10 \\
2 & -7
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
3 & -10 \\
2 & -7
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
3 & -10 \\
2 & -7
\end{array}\right|\) = -21 + 20 = -1 β‰  0
∴ A -1 exists.
Consider AA -1 = I
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-12
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-13

Maharashtra-Board-Solutions

(vii) \(\left[\begin{array}{lll}
2 & -3 & 3 \\
2 & 2 & 3 \\
3 & -2 & 2
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{lll}
2 & -3 & 3 \\
2 & 2 & 3 \\
3 & -2 & 2
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{lll}
2 & -3 & 3 \\
2 & 2 & 3 \\
3 & -2 & 2
\end{array}\right|\)
= 2(4 + 6) +3(4 – 9) + 3(-4 – 6)
= 20 – 15 – 30 = -25 β‰  0
∴ A -1 exists.
Consider AA -1 = I
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-14
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-15
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-16
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-17

(viii) \(\left[\begin{array}{lll}
1 & 3 & -2 \\
-3 & 0 & -5 \\
2 & 5 & 0
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 3 & -2 \\
-3 & 0 & -5 \\
2 & 5 & 0
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{lll}
1 & 3 & -2 \\
-3 & 0 & -5 \\
2 & 5 & 0
\end{array}\right|\)
= 1(0 + 25) + 3(0 + 10) + 2(-15 – 0)
= 25 + 30 -30
= 25 β‰  0
∴ A -1 exists.
Consider AA -1 = I
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-18
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-19
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-20
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-21

(ix) \(\left[\begin{array}{lll}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right]\)
Solution:
Let A =\(\left[\begin{array}{lll}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{lll}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right|\)
= 2(3 – 0) – 0 – 1(5 – 0)
= 6 – 0 – 5 = 1 β‰  0
∴ A -1 exists.
Consider AA -1 = I
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-22
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-23
∴ A -1 = \(\left[\begin{array}{lll}
3 & -1 & 1 \\
-15 & 6 & -5 \\
5 & -2 & 2
\end{array}\right]\)

Maharashtra-Board-Solutions

(x) \(\left[\begin{array}{lll}
1 & 2 & -2 \\
0 & -2 & 1 \\
-1 & 3 & 0
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 2 & -2 \\
0 & -2 & 1 \\
-1 & 3 & 0
\end{array}\right]\)
∴ A -1 = \(\left[\begin{array}{lll}
1 & 2 & -2 \\
0 & -2 & 1 \\
-1 & 3 & 0
\end{array}\right]\)
= 1\(\left|\begin{array}{ll}
-2 & 1 \\
3 & 0
\end{array}\right|\) – 2\(\left|\begin{array}{ll}
0 & 1 \\
-1 & 1
\end{array}\right|\) – 2\(\left|\begin{array}{ll}
0 & -2 \\
-1 & 3
\end{array}\right|\)
|A| = 1(0 – 3) – 2(0 + 1) – 2(0 – 2)
= -3 – 2 + 4
= -1 β‰  0
∴ A -1 exists.
We have
AA -1 = I
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-24
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-25
∴ A -1 = \(\left[\begin{array}{lll}
3 & 6 & 2 \\
1 & 2 & 1 \\
2 & 5 & 2
\end{array}\right]\)

Question 8.
Find the inverse of A = \(\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\) by
(i) elementary row transformations
Solution:
|A| = \(\left|\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right|\)
= cosΞΈ (cosΞΈ – 0) + sinΞΈ (sinΞΈ – 0) + 0
= cos 2 ΞΈ + sin 2 ΞΈ = 1 β‰  0
∴ A -1 exists.
(i) Consider AA -1 = I
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-26
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-27

Maharashtra-Board-Solutions

(ii) elementary column transformations
Solution:
Consider A -1 A = I
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-28
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-29

Question 9.
If A = \(\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right]\), B = \(\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]\) find AB and (AB) -1 . Verify that (AB) -1 = B -1 A -1
Solution:
AB = \(\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right]\) \(\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]\)
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-30
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-31
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-32
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-33
From (1) and (2), (AB) -1 = B -1 βˆ™ A -1 .

Question 10.
If A = \(\left[\begin{array}{ll}
4 & 5 \\
2 & 1
\end{array}\right]\), then show that A -1 = \(\frac{1}{6}\)(A – 5I)
Solution:
|A| = \(\left|\begin{array}{ll}
4 & 5 \\
2 & 1
\end{array}\right|\) = 4 – 10 = -6 β‰  0
∴ A -1 exists.
Consider AA -1 = I
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-34
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-35
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-36

Maharashtra-Board-Solutions

Question 11.
Find matrix X such that AX = B, where A = \(\left[\begin{array}{ll}
1 & 2 \\
-1 & 3
\end{array}\right]\) and B = \(\left[\begin{array}{ll}
0 & 1 \\
2 & 4
\end{array}\right]\)
Solution:
AX = B
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-37

Question 12.
Find X, if AX = B where A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
-1 & 1 & 2 \\
1 & 2 & 4
\end{array}\right]\) and B = \(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\).
Solution:
AX = B
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-38
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-39

Question 13.
If A = \(\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\), B = \(\left[\begin{array}{ll}
4 & 1 \\
3 & 1
\end{array}\right]\) and C = \(\left[\begin{array}{ll}
24 & 7 \\
31 & 9
\end{array}\right]\) then find matrix X such that AXB = C.
Solution:
AXB = C
∴ \(\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)(\mathrm{XB})\) =\(\left[\begin{array}{ll}
24 & 7 \\
31 & 9
\end{array}\right]\)
First we perform the row transformations.
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-40
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-41

Maharashtra-Board-Solutions

Question 14.
Find the inverse of \(\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right]\) by adjoint method.
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right|\)
= 1(7 – 20) – 2(7 – 10) + 3(4 – 2)
= -13 + 6 + 6 = -1 β‰  0
∴ A -1 exists.
First we have to find the cofactor matrix
= [A ij ] 3Γ—3 where A ij = (-1) i+j M ij
Now, A 11 = (-1) 1+1 M 11 = \(\left|\begin{array}{ll}
1 & 5 \\
4 & 7
\end{array}\right|\) = 7 – 20 = -13
A 12 = (-1) 1+2 M 12 = \(\left|\begin{array}{ll}
1 & 5 \\
2 & 7
\end{array}\right|\) = -(7 – 10) = 3
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-42
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-43

Question 15.
Find the inverse of \(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right]\) by adjoint method.
Solution:
where A = \(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right]\)
|A| = 1(2 – 6) – 0(0 – 3) + 1(0 – 2)
|A| = -4 – 2
|A| = -6 β‰  0
∴ A -1 exists.
First we have to find the cofactor matrix
= [A ij ]3Γ—3, where A ij = (-1) i+j M ij
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-44
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-45

Maharashtra-Board-Solutions

Question 16.
Find A -1 by adjoint method and by elementary transformations if A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
-1 & 1 & 2 \\
1 & 2 & 4
\end{array}\right]\)
Solution:
|A| = \(\left|\begin{array}{lll}
1 & 2 & 3 \\
-1 & 1 & 2 \\
1 & 2 & 4
\end{array}\right|\)
= 1(4 – 4) – 2(-4 – 2) + 3(-2 – 1)
= 0 + 12 – 9 = 3 β‰  0
∴ A -1 exists.
A -1 by adjoint method :
We have to find the cofactor matrix
= [A ij ] 3Γ—3 , where A ij = (-1) i+j M ij
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-46
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-47
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-48
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-49

Question 17.
Find the inverse of A = \(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right]\) by elementary column transformations.
Solution:
|A| = \(\left|\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right|\)
= 1 (2 – 6) – 0 + 1 (0 – 2)
= -4 – 2= -6 β‰  0
∴ A -1 exists.
Consider A -1 A = I
∴ A -1 \(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right]\) = \(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\)
By C 3 – C 1 , we get,
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-50
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-51

Maharashtra-Board-Solutions

Question 18.
Find the inverse of \(\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right]\) by elementary row transformations.
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right|\)
= 1(7 – 20) – 2(7 – 10) + 3(4 – 2)
= -13 + 6 + 6 = -1 β‰  0
∴ A -1 exists.
Consider AA -1 = I
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-52
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-53

Question 19.
Show with usual notations that for any matrix A = [a ij ] 3Γ—3
(i) a 11 A 21 + a 12 A 22 + a 13 A 23 = 0
Solution:
A = [a ij ] 3Γ—3 = \(\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\)
(i) A 21 = (-1) 2+1 M 21 = \(-\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|\)
= -(a 12 a 33 – a 13 a 32 )
= -a 12 a 33 + a 13 a 32
A 22 = (-1) 2+2 M 22 = \(\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|\)
= a 11 a 33 – a 13 a 31
A 23 = (-1) 2+3 M 23 = \(-\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right|\)
= -(a 11 a 32 – a 12 a 31 )
= -a 11 a 32 + a 12 a 31
∴ a 11 A 21 + a 12 A 22 + a 13 A 23
= a 11 (-a 12 33 + a 13 a 32 ) + a 12 (a 11 a 33 – a 13 a 31 ) + a 13 (-a 11 a 32 + a 12 a 31 )
= -a 11 a 12 a 33 + a 11 a 13 a 32 + a 11 a 12 a 33 – a 12 a 13 a 31 – a 11 a 13 a 32 + a 12 a 13 a 31
= 0

Maharashtra-Board-Solutions

(ii) a 11 A 11 + a 12 A 12 + a 13 A 13 = |A|
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-54

Question 20.
If A = \(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right]\) and B = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right]\), then find a matrix X such that XA= B.
Solution:
Consider XA = B
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-55
Maharashtra-Board-12th-Maths-Solutions-Chapter-2-Matrices-Miscellaneous-Exercise-2A-56