Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 6 Differential Equations Ex 6.3 Questions and Answers.
12th Maths Part 2 Differential Equations Exercise 6.3 Questions And Answers Maharashtra Board
Question 1.
In each of the following examples verify that the given expression is a solution of the corresponding differential equation.
(i) xy = log y + c; \(\frac{d y}{d x}=\frac{y^{2}}{1-x y}\)
Solution:
xy = log y + c
Differentiating w.r.t. x, we get
Hence, xy = log y + c is a solution of the D.E.
\(\frac{d y}{d x}=\frac{y^{2}}{1-x y^{\prime}}, x y \neq 1\)
(ii) y = (sin
-1
x)
2
+ c; (1 β x
2
) \(\frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=2\)
Solution:
y = (sin
-1
x)
2
+ c β¦β¦.(1)
Differentiating w.r.t. x, we get
Differentiating again w.r.t. x, we get
(iii) y = e
-x
+ Ax + B; \(e^{x} \frac{d^{2} y}{d x^{2}}=1\)
Solution:
y = e
-x
+ Ax + B
Differentiating w.r.t. x, we get
β΄ \(e^{x} \frac{d^{2} y}{d x^{2}}=1\)
Hence, y = e
-x
+ Ax + B is a solution of the D.E.
\(e^{x} \frac{d^{2} y}{d x^{2}}=1\)
(iv) y = x
m
; \(x^{2} \frac{d^{2} y}{d x^{2}}-m x \frac{d y}{d x}+m y=0\)
Solution:
y = x
m
Differentiating twice w.r.t. x, we get
This shows that y = x
m
is a solution of the D.E.
\(x^{2} \frac{d^{2} y}{d x^{2}}-m x \frac{d y}{d x}+m y=0\)
(v) y = a + \(\frac{b}{x}\); \(x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=0\)
Solution:
y = a + \(\frac{b}{x}\)
Differentiating w.r.t. x, we get
Differentiating again w.r.t. x, we get
Hence, y = a + \(\frac{b}{x}\) is a solution of the D.E.
\(x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=0\)
(vi) y = e
ax
; x \(\frac{d y}{d x}\) = y log y
Solution:
y = e
ax
log y = log e
ax
= ax log e
log y = ax β¦β¦.(1) β¦β¦..[β΅ log e = 1]
Differentiating w.r.t. x, we get
\(\frac{1}{y} \cdot \frac{d y}{d x}\) = a Γ 1
β΄ \(\frac{d y}{d x}\) = ay
β΄ x \(\frac{d y}{d x}\) = (ax)y
β΄ x \(\frac{d y}{d x}\) = y log y β¦β¦β¦[By (1)]
Hence, y = e
ax
is a solution of the D.E.
x \(\frac{d y}{d x}\) = y log y.
Question 2.
Solve the following differential equations.
(i) \(\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}\)
Solution:
(ii) log(\(\frac{d y}{d x}\)) = 2x + 3y
Solution:
(iii) y β x \(\frac{d y}{d x}\) = 0
Solution:
y β x \(\frac{d y}{d x}\) = 0
β΄ x \(\frac{d y}{d x}\) = y
β΄ \(\frac{1}{x} d x=\frac{1}{y} d y\)
Integrating both sides, we get
\(\int \frac{1}{x} d x=\int \frac{1}{y} d y\)
β΄ log |x| = log |y| + log c
β΄ log |x| = log |cy|
β΄ x = cy
This is the general solution.
(iv) sec
2
x . tan y dx + sec
2
y . tan x dy = 0
Solution:
sec
2
x . tan y dx + sec
2
y . tan x dy = 0
β΄ \(\frac{\sec ^{2} x}{\tan x} d x+\frac{\sec ^{2} y}{\tan y} d y=0\)
Integrating both sides, we get
\(\int \frac{\sec ^{2} x}{\tan x} d x+\int \frac{\sec ^{2} y}{\tan y} d y=c_{1}\)
Each of these integrals is of the type
\(\int \frac{f^{\prime}(x)}{f(x)} d x\) = log |f(x)| + c
β΄ the general solution is
β΄ log|tan x| + log|tan y | = log c, where c
1
= log c
β΄ log |tan x . tan y| = log c
β΄ tan x . tan y = c
This is the general solution.
(v) cos x . cos y dy β sin x . sin y dx = 0
Solution:
cos x . cos y dy β sin x . sin y dx = 0
\(\frac{\cos y}{\sin y} d y-\frac{\sin x}{\cos x} d x=0\)
Integrating both sides, we get
β«cot y dy β β«tan x dx = c
1
β΄ log|sin y| β [-log|cos x|] = log c, where c
1
= log c
β΄ log |sin y| + log|cos x| = log c
β΄ log|sin y . cos x| = log c
β΄ sin y . cos x = c
This is the general solution.
(vi) \(\frac{d y}{d x}\) = -k, where k is a constant.
Solution:
\(\frac{d y}{d x}\) = -k
β΄ dy = -k dx
Integrating both sides, we get
β«dy = -kβ«dx
β΄ y = -kx + c
This is the general solution.
(vii) \(\frac{\cos ^{2} y}{x} d y+\frac{\cos ^{2} x}{y} d x=0\)
Solution:
\(\frac{\cos ^{2} y}{x} d y+\frac{\cos ^{2} x}{y} d x=0\)
β΄ y cos
2
y dy + x cos
2
x dx = 0
β΄ \(x\left(\frac{1+\cos 2 x}{2}\right) d x+y\left(1+\frac{\cos 2 y}{2}\right) d y=0\)
β΄ x(1 + cos 2x) dx + y(1 + cos 2y) dy = 0
β΄ x dx + x cos 2x dx + y dy+ y cos 2y dy = 0
Integrating both sides, we get
β«x dx + β«y dy + β«x cos 2x dx + β«y cos 2y dy = c
1
β¦β¦..(1)
Using integration by parts
Multiplying throughout by 4, this becomes
2x
2
+ 2y
2
+ 2x sin 2x + cos 2x + 2y sin 2y + cos 2y = 4c
1
β΄ 2(x
2
+ y
2
) + 2(x sin 2x + y sin 2y) + cos 2y + cos 2x + c = 0, where c = -4c
1
This is the general solution.
(viii) \(y^{3}-\frac{d y}{d x}=x^{2} \frac{d y}{d x}\)
Solution:
(ix) 2e
x+2y
dx β 3 dy = 0
Solution:
(x) \(\frac{d y}{d x}\) = e
x+y
+ x
2
e
y
Solution:
β΄ 3e
x
+ 3e
-y
+ x
3
= -3c
1
β΄ 3e
x
+ 3e
-y
+ x
3
= c, where c = -3c
1
This is the general solution.
Question 3.
For each of the following differential equations, find the particular solution satisfying the given condition:
(i) 3e
x
tan y dx + (1 + e
x
) sec
2
y dy = 0, when x = 0, y = Ο
Solution:
3e
x
tan y dx + (1 + e
x
) sec
2
y dy = 0
(ii) (x β y
2
x) dx β (y + x
2
y) dy = 0, when x = 2, y = 0
Solution:
(x β y
2
x) dx β (y + x
2
y) dy = 0
β΄ x(1 β y
2
) dx β y(1 + x
2
) dy = 0
When x = 2, y = 0, we have
(1 + 4)(1 β 0) = c
β΄ c = 5
β΄ the particular solution is (1 + x
2
)(1 β y
2
) = 5.
(iii) y(1 + log x) \(\frac{d x}{d y}\) β x log x = 0, y = e
2
, when x = e
Solution:
y(1 + log x) \(\frac{d x}{d y}\) β x log x = 0
(iv) (e
y
+ 1) cos x + e
y
sin x \(\frac{d y}{d x}\) = 0, when x = \(\frac{\pi}{6}\), y = 0
Solution:
(e
y
+ 1) cos x + e
y
sin x \(\frac{d y}{d x}\) = 0
\(\int \frac{f^{\prime}(x)}{f(x)} d x\) = log|f(x)| + c
β΄ from (1), the general solution is
log|sin x| + log|e
y
+ 1| = log c, where c
1
= log c
β΄ log|sin x . (e
y
+ 1)| = log c
β΄ sin x . (e
y
+ 1) = c
When x = \(\frac{\pi}{4}\), y = 0, we get
\(\left(\sin \frac{\pi}{4}\right)\left(e^{0}+1\right)=c\)
β΄ c = \(\frac{1}{\sqrt{2}}\)(1 + 1) = β2
β΄ the particular solution is sin x . (e
y
+ 1) = β2
(v) (x + 1) \(\frac{d y}{d x}\) β 1 = 2e
-y
, y = 0, when x = 1
Solution:
This is the general solution.
Now, y = 0, when x = 1
β΄ 2 + e
0
= c(1 + 1)
β΄ 3 = 2c
β΄ c = \(\frac{3}{2}\)
β΄ the particular solution is 2 + e
y
= \(\frac{3}{2}\) (x + 1)
β΄ 2(2 + e
y
) = 3(x + 1).
(vi) cos(\(\frac{d y}{d x}\)) = a, a β R, y (0) = 2
Solution:
cos(\(\frac{d y}{d x}\)) = a
β΄ \(\frac{d y}{d x}\) = cos
-1
a
β΄ dy = (cos
-1
a) dx
Integrating both sides, we get
β«dy = (cos
-1
a) β«dx
β΄ y = (cos
-1
a) x + c
β΄ y = x cos
-1
a + c
This is the general solution.
Now, y(0) = 2, i.e. y = 2,
when x = 0, 2 = 0 + c
β΄ c = 2
β΄ the particular solution is
β΄ y = x cos
-1
a + 2
β΄ y β 2 = x cos
-1
a
β΄ \(\frac{y-2}{x}\) = cos
-1
a
β΄ cos(\(\frac{y-2}{x}\)) = a
Question 4.
Reduce each of the following differential equations to the variable separable form and hence solve:
(i) \(\frac{d y}{d x}\) = cos(x + y)
Solution:
(ii) (x β y)
2
\(\frac{d y}{d x}\) = a
2
Solution:
(iii) x + y \(\frac{d y}{d x}\) = sec(x
2
+ y
2
)
Solution:
Integrating both sides, we get
β«cos u du = 2 β«dx
β΄ sin u = 2x + c
β΄ sin(x
2
+ y
2
) = 2x + c
This is the general solution.
(iv) cos
2
(x β 2y) = 1 β 2 \(\frac{d y}{d x}\)
Solution:
Integrating both sides, we get
β«dx = β«sec
2
u du
β΄ x = tan u + c
β΄ x = tan(x β 2y) + c
This is the general solution.
(v) (2x β 2y + 3) dx β (x β y + 1) dy = 0, when x = 0, y = 1
Solution:
(2x β 2y + 3) dx β (x β y + 1) dy = 0
β΄ (x β y + 1) dy = (2x β 2y + 3) dx
β΄ \(\frac{d y}{d x}=\frac{2(x-y)+3}{(x-y)+1}\) β¦β¦β¦(1)
Put x β y = u, Then \(1-\frac{d y}{d x}=\frac{d u}{d x}\)
β΄ u β log|u + 2| = -x + c
β΄ x β y β log|x β y + 2| = -x + c
β΄ (2x β y) β log|x β y + 2| = c
This is the general solution.
Now, y = 1, when x = 0.
β΄ (0 β 1) β log|0 β 1 + 2| = c
β΄ -1 β o = c
β΄ c = -1
β΄ the particular solution is
(2x β y) β log|x β y + 2| = -1
β΄ (2x β y) β log|x β y + 2| + 1 = 0