Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 6 Differential Equations Ex 6.3 Questions and Answers.
12th Maths Part 2 Differential Equations Exercise 6.3 Questions And Answers Maharashtra Board
Question 1.
In each of the following examples verify that the given expression is a solution of the corresponding differential equation.
(i) xy = log y + c; dydx=y21βxy
Solution:
xy = log y + c
Differentiating w.r.t. x, we get
Hence, xy = log y + c is a solution of the D.E.
dydx=y21βxyβ²,xyβ 1
(ii) y = (sin
-1
x)
2
+ c; (1 β x
2
) d2ydx2βxdydx=2
Solution:
y = (sin
-1
x)
2
+ c β¦β¦.(1)
Differentiating w.r.t. x, we get
Differentiating again w.r.t. x, we get
(iii) y = e
-x
+ Ax + B; exd2ydx2=1
Solution:
y = e
-x
+ Ax + B
Differentiating w.r.t. x, we get
β΄ exd2ydx2=1
Hence, y = e
-x
+ Ax + B is a solution of the D.E.
exd2ydx2=1
(iv) y = x
m
; x2d2ydx2βmxdydx+my=0
Solution:
y = x
m
Differentiating twice w.r.t. x, we get
This shows that y = x
m
is a solution of the D.E.
x2d2ydx2βmxdydx+my=0
(v) y = a + bx; xd2ydx2+2dydx=0
Solution:
y = a + bx
Differentiating w.r.t. x, we get
Differentiating again w.r.t. x, we get
Hence, y = a + bx is a solution of the D.E.
xd2ydx2+2dydx=0
(vi) y = e
ax
; x dydx = y log y
Solution:
y = e
ax
log y = log e
ax
= ax log e
log y = ax β¦β¦.(1) β¦β¦..[β΅ log e = 1]
Differentiating w.r.t. x, we get
1yβ
dydx = a Γ 1
β΄ dydx = ay
β΄ x dydx = (ax)y
β΄ x dydx = y log y β¦β¦β¦[By (1)]
Hence, y = e
ax
is a solution of the D.E.
x dydx = y log y.
Question 2.
Solve the following differential equations.
(i) dydx=1+y21+x2
Solution:
(ii) log(dydx) = 2x + 3y
Solution:
(iii) y β x dydx = 0
Solution:
y β x dydx = 0
β΄ x dydx = y
β΄ 1xdx=1ydy
Integrating both sides, we get
β«1xdx=β«1ydy
β΄ log |x| = log |y| + log c
β΄ log |x| = log |cy|
β΄ x = cy
This is the general solution.
(iv) sec
2
x . tan y dx + sec
2
y . tan x dy = 0
Solution:
sec
2
x . tan y dx + sec
2
y . tan x dy = 0
β΄ sec2xtanxdx+sec2ytanydy=0
Integrating both sides, we get
β«sec2xtanxdx+β«sec2ytanydy=c1
Each of these integrals is of the type
β«fβ²(x)f(x)dx = log |f(x)| + c
β΄ the general solution is
β΄ log|tan x| + log|tan y | = log c, where c
1
= log c
β΄ log |tan x . tan y| = log c
β΄ tan x . tan y = c
This is the general solution.
(v) cos x . cos y dy β sin x . sin y dx = 0
Solution:
cos x . cos y dy β sin x . sin y dx = 0
cosysinydyβsinxcosxdx=0
Integrating both sides, we get
β«cot y dy β β«tan x dx = c
1
β΄ log|sin y| β [-log|cos x|] = log c, where c
1
= log c
β΄ log |sin y| + log|cos x| = log c
β΄ log|sin y . cos x| = log c
β΄ sin y . cos x = c
This is the general solution.
(vi) dydx = -k, where k is a constant.
Solution:
dydx = -k
β΄ dy = -k dx
Integrating both sides, we get
β«dy = -kβ«dx
β΄ y = -kx + c
This is the general solution.
(vii) cos2yxdy+cos2xydx=0
Solution:
cos2yxdy+cos2xydx=0
β΄ y cos
2
y dy + x cos
2
x dx = 0
β΄ x(1+cos2x2)dx+y(1+cos2y2)dy=0
β΄ x(1 + cos 2x) dx + y(1 + cos 2y) dy = 0
β΄ x dx + x cos 2x dx + y dy+ y cos 2y dy = 0
Integrating both sides, we get
β«x dx + β«y dy + β«x cos 2x dx + β«y cos 2y dy = c
1
β¦β¦..(1)
Using integration by parts
Multiplying throughout by 4, this becomes
2x
2
+ 2y
2
+ 2x sin 2x + cos 2x + 2y sin 2y + cos 2y = 4c
1
β΄ 2(x
2
+ y
2
) + 2(x sin 2x + y sin 2y) + cos 2y + cos 2x + c = 0, where c = -4c
1
This is the general solution.
(viii) y3βdydx=x2dydx
Solution:
(ix) 2e
x+2y
dx β 3 dy = 0
Solution:
(x) dydx = e
x+y
+ x
2
e
y
Solution:
β΄ 3e
x
+ 3e
-y
+ x
3
= -3c
1
β΄ 3e
x
+ 3e
-y
+ x
3
= c, where c = -3c
1
This is the general solution.
Question 3.
For each of the following differential equations, find the particular solution satisfying the given condition:
(i) 3e
x
tan y dx + (1 + e
x
) sec
2
y dy = 0, when x = 0, y = Ο
Solution:
3e
x
tan y dx + (1 + e
x
) sec
2
y dy = 0
(ii) (x β y
2
x) dx β (y + x
2
y) dy = 0, when x = 2, y = 0
Solution:
(x β y
2
x) dx β (y + x
2
y) dy = 0
β΄ x(1 β y
2
) dx β y(1 + x
2
) dy = 0
When x = 2, y = 0, we have
(1 + 4)(1 β 0) = c
β΄ c = 5
β΄ the particular solution is (1 + x
2
)(1 β y
2
) = 5.
(iii) y(1 + log x) dxdy β x log x = 0, y = e
2
, when x = e
Solution:
y(1 + log x) dxdy β x log x = 0
(iv) (e
y
+ 1) cos x + e
y
sin x dydx = 0, when x = Ο6, y = 0
Solution:
(e
y
+ 1) cos x + e
y
sin x dydx = 0
β«fβ²(x)f(x)dx = log|f(x)| + c
β΄ from (1), the general solution is
log|sin x| + log|e
y
+ 1| = log c, where c
1
= log c
β΄ log|sin x . (e
y
+ 1)| = log c
β΄ sin x . (e
y
+ 1) = c
When x = Ο4, y = 0, we get
(sinΟ4)(e0+1)=c
β΄ c = 1β2(1 + 1) = β2
β΄ the particular solution is sin x . (e
y
+ 1) = β2
(v) (x + 1) dydx β 1 = 2e
-y
, y = 0, when x = 1
Solution:
This is the general solution.
Now, y = 0, when x = 1
β΄ 2 + e
0
= c(1 + 1)
β΄ 3 = 2c
β΄ c = 32
β΄ the particular solution is 2 + e
y
= 32 (x + 1)
β΄ 2(2 + e
y
) = 3(x + 1).
(vi) cos(dydx) = a, a β R, y (0) = 2
Solution:
cos(dydx) = a
β΄ dydx = cos
-1
a
β΄ dy = (cos
-1
a) dx
Integrating both sides, we get
β«dy = (cos
-1
a) β«dx
β΄ y = (cos
-1
a) x + c
β΄ y = x cos
-1
a + c
This is the general solution.
Now, y(0) = 2, i.e. y = 2,
when x = 0, 2 = 0 + c
β΄ c = 2
β΄ the particular solution is
β΄ y = x cos
-1
a + 2
β΄ y β 2 = x cos
-1
a
β΄ yβ2x = cos
-1
a
β΄ cos(yβ2x) = a
Question 4.
Reduce each of the following differential equations to the variable separable form and hence solve:
(i) dydx = cos(x + y)
Solution:
(ii) (x β y)
2
dydx = a
2
Solution:
(iii) x + y dydx = sec(x
2
+ y
2
)
Solution:
Integrating both sides, we get
β«cos u du = 2 β«dx
β΄ sin u = 2x + c
β΄ sin(x
2
+ y
2
) = 2x + c
This is the general solution.
(iv) cos
2
(x β 2y) = 1 β 2 dydx
Solution:
Integrating both sides, we get
β«dx = β«sec
2
u du
β΄ x = tan u + c
β΄ x = tan(x β 2y) + c
This is the general solution.
(v) (2x β 2y + 3) dx β (x β y + 1) dy = 0, when x = 0, y = 1
Solution:
(2x β 2y + 3) dx β (x β y + 1) dy = 0
β΄ (x β y + 1) dy = (2x β 2y + 3) dx
β΄ dydx=2(xβy)+3(xβy)+1 β¦β¦β¦(1)
Put x β y = u, Then 1βdydx=dudx
β΄ u β log|u + 2| = -x + c
β΄ x β y β log|x β y + 2| = -x + c
β΄ (2x β y) β log|x β y + 2| = c
This is the general solution.
Now, y = 1, when x = 0.
β΄ (0 β 1) β log|0 β 1 + 2| = c
β΄ -1 β o = c
β΄ c = -1
β΄ the particular solution is
(2x β y) β log|x β y + 2| = -1
β΄ (2x β y) β log|x β y + 2| + 1 = 0