Processing math: 100%

Differential Equations Class 12 Maths 2 Exercise 6.3 Solutions Maharashtra Board

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 6 Differential Equations Ex 6.3 Questions and Answers.

12th Maths Part 2 Differential Equations Exercise 6.3 Questions And Answers Maharashtra Board

Question 1.
In each of the following examples verify that the given expression is a solution of the corresponding differential equation.
(i) xy = log y + c; dydx=y21βˆ’xy
Solution:
xy = log y + c
Differentiating w.r.t. x, we get
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q1-i
Hence, xy = log y + c is a solution of the D.E.
dydx=y21βˆ’xyβ€²,xyβ‰ 1

(ii) y = (sin -1 x) 2 + c; (1 – x 2 ) d2ydx2βˆ’xdydx=2
Solution:
y = (sin -1 x) 2 + c …….(1)
Differentiating w.r.t. x, we get
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q1-ii
Differentiating again w.r.t. x, we get
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q1-ii.1

Maharashtra-Board-Solutions

(iii) y = e -x + Ax + B; exd2ydx2=1
Solution:
y = e -x + Ax + B
Differentiating w.r.t. x, we get
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q1-iii
∴ exd2ydx2=1
Hence, y = e -x + Ax + B is a solution of the D.E.
exd2ydx2=1

(iv) y = x m ; x2d2ydx2βˆ’mxdydx+my=0
Solution:
y = x m
Differentiating twice w.r.t. x, we get
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q1-iv
This shows that y = x m is a solution of the D.E.
x2d2ydx2βˆ’mxdydx+my=0

(v) y = a + bx; xd2ydx2+2dydx=0
Solution:
y = a + bx
Differentiating w.r.t. x, we get
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q1-v
Differentiating again w.r.t. x, we get
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q1-v.1
Hence, y = a + bx is a solution of the D.E.
xd2ydx2+2dydx=0

Maharashtra-Board-Solutions

(vi) y = e ax ; x dydx = y log y
Solution:
y = e ax
log y = log e ax = ax log e
log y = ax …….(1) ……..[∡ log e = 1]
Differentiating w.r.t. x, we get
1yβ‹…dydx = a Γ— 1
∴ dydx = ay
∴ x dydx = (ax)y
∴ x dydx = y log y ………[By (1)]
Hence, y = e ax is a solution of the D.E.
x dydx = y log y.

Question 2.
Solve the following differential equations.
(i) dydx=1+y21+x2
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q2-i

(ii) log(dydx) = 2x + 3y
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q2-ii

(iii) y – x dydx = 0
Solution:
y – x dydx = 0
∴ x dydx = y
∴ 1xdx=1ydy
Integrating both sides, we get
∫1xdx=∫1ydy
∴ log |x| = log |y| + log c
∴ log |x| = log |cy|
∴ x = cy
This is the general solution.

Maharashtra-Board-Solutions

(iv) sec 2 x . tan y dx + sec 2 y . tan x dy = 0
Solution:
sec 2 x . tan y dx + sec 2 y . tan x dy = 0
∴ sec2xtanxdx+sec2ytanydy=0
Integrating both sides, we get
∫sec2xtanxdx+∫sec2ytanydy=c1
Each of these integrals is of the type
∫fβ€²(x)f(x)dx = log |f(x)| + c
∴ the general solution is
∴ log|tan x| + log|tan y | = log c, where c 1 = log c
∴ log |tan x . tan y| = log c
∴ tan x . tan y = c
This is the general solution.

(v) cos x . cos y dy – sin x . sin y dx = 0
Solution:
cos x . cos y dy – sin x . sin y dx = 0
cosysinydyβˆ’sinxcosxdx=0
Integrating both sides, we get
∫cot y dy – ∫tan x dx = c 1
∴ log|sin y| – [-log|cos x|] = log c, where c 1 = log c
∴ log |sin y| + log|cos x| = log c
∴ log|sin y . cos x| = log c
∴ sin y . cos x = c
This is the general solution.

(vi) dydx = -k, where k is a constant.
Solution:
dydx = -k
∴ dy = -k dx
Integrating both sides, we get
∫dy = -k∫dx
∴ y = -kx + c
This is the general solution.

Maharashtra-Board-Solutions

(vii) cos2yxdy+cos2xydx=0
Solution:
cos2yxdy+cos2xydx=0
∴ y cos 2 y dy + x cos 2 x dx = 0
∴ x(1+cos2x2)dx+y(1+cos2y2)dy=0
∴ x(1 + cos 2x) dx + y(1 + cos 2y) dy = 0
∴ x dx + x cos 2x dx + y dy+ y cos 2y dy = 0
Integrating both sides, we get
∫x dx + ∫y dy + ∫x cos 2x dx + ∫y cos 2y dy = c 1 ……..(1)
Using integration by parts
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q2-vii
Multiplying throughout by 4, this becomes
2x 2 + 2y 2 + 2x sin 2x + cos 2x + 2y sin 2y + cos 2y = 4c 1
∴ 2(x 2 + y 2 ) + 2(x sin 2x + y sin 2y) + cos 2y + cos 2x + c = 0, where c = -4c 1
This is the general solution.

(viii) y3βˆ’dydx=x2dydx
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q2-viii

(ix) 2e x+2y dx – 3 dy = 0
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q2-ix

Maharashtra-Board-Solutions

(x) dydx = e x+y + x 2 e y
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q2-x
∴ 3e x + 3e -y + x 3 = -3c 1
∴ 3e x + 3e -y + x 3 = c, where c = -3c 1
This is the general solution.

Question 3.
For each of the following differential equations, find the particular solution satisfying the given condition:
(i) 3e x tan y dx + (1 + e x ) sec 2 y dy = 0, when x = 0, y = Ο€
Solution:
3e x tan y dx + (1 + e x ) sec 2 y dy = 0
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q3-i

(ii) (x – y 2 x) dx – (y + x 2 y) dy = 0, when x = 2, y = 0
Solution:
(x – y 2 x) dx – (y + x 2 y) dy = 0
∴ x(1 – y 2 ) dx – y(1 + x 2 ) dy = 0
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q3-ii
When x = 2, y = 0, we have
(1 + 4)(1 – 0) = c
∴ c = 5
∴ the particular solution is (1 + x 2 )(1 – y 2 ) = 5.

(iii) y(1 + log x) dxdy – x log x = 0, y = e 2 , when x = e
Solution:
y(1 + log x) dxdy – x log x = 0
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q3-iii
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q3-iii.1

Maharashtra-Board-Solutions

(iv) (e y + 1) cos x + e y sin x dydx = 0, when x = Ο€6, y = 0
Solution:
(e y + 1) cos x + e y sin x dydx = 0
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q3-iv
∫fβ€²(x)f(x)dx = log|f(x)| + c
∴ from (1), the general solution is
log|sin x| + log|e y + 1| = log c, where c 1 = log c
∴ log|sin x . (e y + 1)| = log c
∴ sin x . (e y + 1) = c
When x = Ο€4, y = 0, we get
(sinΟ€4)(e0+1)=c
∴ c = 1√2(1 + 1) = √2
∴ the particular solution is sin x . (e y + 1) = √2

(v) (x + 1) dydx – 1 = 2e -y , y = 0, when x = 1
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q3-v
This is the general solution.
Now, y = 0, when x = 1
∴ 2 + e 0 = c(1 + 1)
∴ 3 = 2c
∴ c = 32
∴ the particular solution is 2 + e y = 32 (x + 1)
∴ 2(2 + e y ) = 3(x + 1).

Maharashtra-Board-Solutions

(vi) cos(dydx) = a, a ∈ R, y (0) = 2
Solution:
cos(dydx) = a
∴ dydx = cos -1 a
∴ dy = (cos -1 a) dx
Integrating both sides, we get
∫dy = (cos -1 a) ∫dx
∴ y = (cos -1 a) x + c
∴ y = x cos -1 a + c
This is the general solution.
Now, y(0) = 2, i.e. y = 2,
when x = 0, 2 = 0 + c
∴ c = 2
∴ the particular solution is
∴ y = x cos -1 a + 2
∴ y – 2 = x cos -1 a
∴ yβˆ’2x = cos -1 a
∴ cos(yβˆ’2x) = a

Question 4.
Reduce each of the following differential equations to the variable separable form and hence solve:
(i) dydx = cos(x + y)
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q4-i
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q4-i.1

Maharashtra-Board-Solutions

(ii) (x – y) 2 dydx = a 2
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q4-ii
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q4-ii.1

(iii) x + y dydx = sec(x 2 + y 2 )
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q4-iii
Integrating both sides, we get
∫cos u du = 2 ∫dx
∴ sin u = 2x + c
∴ sin(x 2 + y 2 ) = 2x + c
This is the general solution.

(iv) cos 2 (x – 2y) = 1 – 2 dydx
Solution:
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q4-iv
Integrating both sides, we get
∫dx = ∫sec 2 u du
∴ x = tan u + c
∴ x = tan(x – 2y) + c
This is the general solution.

Maharashtra-Board-Solutions

(v) (2x – 2y + 3) dx – (x – y + 1) dy = 0, when x = 0, y = 1
Solution:
(2x – 2y + 3) dx – (x – y + 1) dy = 0
∴ (x – y + 1) dy = (2x – 2y + 3) dx
∴ dydx=2(xβˆ’y)+3(xβˆ’y)+1 ………(1)
Put x – y = u, Then 1βˆ’dydx=dudx
Maharashtra-Board-12th-Maths-Solutions-Chapter-6-Differential-Equations-Ex-6.3-Q4-v
∴ u – log|u + 2| = -x + c
∴ x – y – log|x – y + 2| = -x + c
∴ (2x – y) – log|x – y + 2| = c
This is the general solution.
Now, y = 1, when x = 0.
∴ (0 – 1) – log|0 – 1 + 2| = c
∴ -1 – o = c
∴ c = -1
∴ the particular solution is
(2x – y) – log|x – y + 2| = -1
∴ (2x – y) – log|x – y + 2| + 1 = 0